Quantcast
Channel: 更新情報 --- 研究 | 東工大ニュース | 東京工業大学
Viewing all 2008 articles
Browse latest View live

発生過程の胚での最初の遺伝子発現のきっかけを作る重要なヒストン修飾を発見

$
0
0

要点

  • 発生過程の生きたままの胚で、転写活性化とヒストン修飾の変化を追跡することに成功。
  • 胚ゲノムからの最初の転写に、ヒストンH3の27番目リシン残基のアセチル化修飾が重要な役割を果たしていることを確認。

概要

東京工業大学 科学技術創成研究院 細胞制御工学研究センターの木村宏教授の研究グループ(佐藤優子助教、小田春佳日本学術振興会特別研究員)は、マックスプランク研究所(ドイツ)、ジャネリア・リサーチキャンパス(米国)、ニューヨーク大学(米国)の研究グループとの国際共同研究により、発生過程の生きたゼブラフィッシュ胚において、転写活性化とヒストン修飾の変化を観察することに成功しました。さらに、取得した画像の定量解析により、ヒストンH3の27番目リシン残基のアセチル化修飾が胚ゲノム活性化に重要な役割を果たしていることを明らかにしました。

今回の研究により、生物個体の発生や分化の過程での遺伝子発現の制御には、ヒストンのアセチル化が重要であることが示されました。また、研究チームが開発したタンパク質修飾の生細胞観察手法の有用性が実証され、アセチル化修飾の詳しい仕組みの解明を目指す今後の研究への活用が期待されます。

この成果は9月30日付でDevelopment誌に掲載されました。

発生過程の胚での最初の遺伝子発現のきっかけを作る重要なヒストン修飾を発見

研究の背景

有性生殖[用語1]では、卵子と精子が受精すると、それぞれが持つDNAが混ざり合い、「胚ゲノム」となります。受精後しばらくの間は、この胚ゲノムが眠った状態(転写活性がない状態[用語2])で胚発生が進みます。この間は、卵子に蓄積されていたRNAやタンパク質(母性因子)を使って細胞機能が営まれます。母性因子の貯蓄がなくなるころ、胚ゲノムは目覚め、大規模な転写の活性化がおこり、細胞の分化[用語3]が始まります(図1)。この胚ゲノムの活性化は古くから知られた現象ですが、それがどのように制御されているのかについては、未だ不明な部分が多く残されています。最近の研究から、ヒストン修飾[用語4]による活性化の制御が重要であることが示唆されていました。

ゼブラフィッシュ発生過程

図1. ゼブラフィッシュ発生過程


精子と卵子が受精して受精卵を形成すると、胚発生が始まる。ゼブラフィッシュの場合、受精後およそ3時間で1,000細胞まで分裂する。この間は、胚ゲノムからの遺伝子発現は起こらず、卵子に蓄積されたRNAやタンパク質を利用して細胞機能が営まれている。1,000細胞期になると胚ゲノムからの大規模な転写活性化が起こり、細胞の分化が始まる。

研究成果

木村教授の研究グループはこれまで、RNAポリメラーゼ(転写を行う酵素)やヒストン(DNAと強く結合するタンパク質)などの翻訳後修飾を、部位特異的に認識するモノクローナル抗体を作出してきました。また、これらのモノクローナル抗体から生細胞プローブ[用語5]を開発し、修飾動態の変化を計測するシステムFabLEM(Fab-based Live Endogenous Modification Labeling)を構築しました。今回木村教授の研究グループは、ゼブラフィッシュ胚にFabLEMを適用し、転写活性化とヒストン修飾のダイナミクスを、発生過程の生きた胚の中で追跡することに成功しました(図2)。さらに、国際共同研究により取得した蛍光顕微鏡画像の定量解析を行い、胚ゲノムの活性化において、ヒストンH3の27番目リシン残基のアセチル化修飾が重要な役割を果たしていることを明らかにしました。特に、胚ゲノム活性化の初期に高レベルで発現するmiR-430遺伝子クラスター[用語6]上で、アセチル化修飾と活性型RNAポリメラーゼが順番に濃縮する様子を詳しく観察することができました(図3)。また、RNAポリメラーゼを阻害してもヒストンのアセチル化修飾が集積するのに対して、アセチル化ヒストンに結合するタンパク質を阻害すると転写が起こらなくなることも確認しました。

本研究は、生物個体の発生や分化の過程における遺伝子発現の制御にヒストンのアセチル化が重要であることだけでなく、研究グループが開発したタンパク質修飾の生細胞観察手法が広く応用可能であり、今後の研究に有用であることも示しました。

FabLEMによる転写活性化およびヒストン修飾動態観察

図2. FabLEMによる転写活性化およびヒストン修飾動態観察


(A)FabLEMの概要。リン酸化型RNAポリメラーゼやヒストンの翻訳後修飾に特異的な抗体の抗原結合部位(Fab)を、蛍光色素で標識したうえで、1細胞期のゼブラフィッシュ胚にマイクロインジェクションにより導入する。4細胞期まで発生させた胚をアガロースに埋めこんで、ライトシート蛍光顕微鏡(SiMView)および共焦点蛍光顕微鏡(FV1000)を用いて観察する。(B)胚ゲノム活性化の可視化。Ser2リン酸化型RNAポリメラーゼ(RNAP2 Ser2ph)とヒストンH3 Lys9アセチル化(H3K9ac)を認識するFabを導入した胚を、SiMViewを用いて観察した。転写活性化の指標であるRNAP2 Ser2phのシグナルは、8細胞期(8-cell)では核内(拡大図中、点線枠)に見られないが、1,000細胞期(1k-cell)まで発生が進むと核内に集積する様子が見られた(拡大図中、黄色矢印)。一方で、H3K9acシグナルは発生の早い段階(8細胞期;8-cell)からすでに細胞核内に濃縮されていた。スケールバーは100 μm。

miR-430遺伝子クラスターにおけるヒストンアセチル化と転写活性化

図3. miR-430遺伝子クラスターにおけるヒストンアセチル化と転写活性化


Ser2リン酸化型RNAポリメラーゼ(RNAP2 Ser2ph)とヒストンH3 Lys27アセチル化(H3K27ac)を認識するFabを導入した胚を、共焦点蛍光顕微鏡(FV1000)を用いて観察した。512細胞期の1個の核に注目し、細胞分裂直後から次の分裂期間まで経時的に画像を取得した。撮影開始からの経過時間を各画像の上方に表示した(分:秒)。H3K27acシグナルは分裂期直後(1:28)から2箇所に集積する様子が見られた(2つのうちの片方をマゼンタ色矢印で表示)。RNAP2 Ser2phシグナルは、H3K27acよりも遅れて同じサイトに集積した(6:19、緑色矢印)。拡大図は、H3K27ac(マゼンタ)とRNAP2 Ser2ph(緑)のシグナルが集積した場所(重ね合わせ)。スケールバーは10 μm。

今後の展開

今回、ヒストンのアセチル化修飾が胚ゲノムの転写活性化を引き起こすことが明らかになりました。しかし、アセチル化修飾によって胚ゲノムに具体的にどのような変化が起きているのか、アセチル化修飾がどのようなきっかけで上昇するのかなど、まだたくさんの疑問が残されています。今後も生細胞プローブを使って、このような問題をひとつずつ紐解いていく予定です。

用語説明

[用語1] 有性生殖 : 有性生殖をおこなう生物は、生殖のための特別な細胞「配偶子」(例えば、精子と卵子)を作り、異なる性の個体同士で配偶子を合体させることにより、両親とは違う新しい個体を作り出します。

[用語2] 転写活性がない状態 : 遺伝子からRNAポリメラーゼにより遺伝暗号(コドン)が読み取られ、メッセンジャーRNAが作られる過程を「転写」と呼びます。メッセンジャーRNAが翻訳されることでタンパク質が作られます。タンパク質合成は細胞機能に必須であるため、初期胚の発生過程でゲノムがいったん目覚めたあとは、生きている細胞では常に転写が行われています。

[用語3] 細胞の分化 : 細胞が、特定の機能や形態を持つ状態へ変化することを「分化」と呼びます。発生初期の分化していない状態(未分化)の細胞は、きっかけを与えることで神経細胞や表皮細胞へ分化します。我々の体は、1個の受精卵が増殖と分化を繰り返すことで生じた、多様な細胞から成り立っています。

[用語4] ヒストン修飾 : 真核生物のDNAは細胞核の中で、ヒストンたんぱく質と強く結合してヌクレオソーム構造を作っています。近年の研究から、アセチル化やメチル化などのヒストン修飾による遺伝子制御は、様々な細胞機能の基盤であることが分かってきています。

[用語5] 生細胞プローブ : 生きた細胞の中の物質の動態を追跡するツールを「生細胞プローブ」と呼びます。

[用語6] miR-430遺伝子クラスター : DNAから転写されて生成したRNAのうち、翻訳されないRNAを「ノンコーディングRNA」と呼び、そのうちのひとつに「マイクロRNA」があります。miR-430は、ゼブラフィッシュの胚ゲノム活性化の初期に転写され、卵子由来のRNAの分解に関与しています。

論文情報

掲載誌 :
Development
論文タイトル :
Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis
著者 :
Yuko Sato, Lennart Hilbert, Haruka Oda, Yinan Wan, John M. Heddleston, Teng-Leong Chew, Vasily Zaburdaev, Philipp Keller, Timothee Lionnet, Nadine Vastenhouw, and Hiroshi Kimura
DOI :

お問い合わせ先

東京工業大学 科学技術創成研究院 細胞制御工学研究センター

教授 木村宏

E-mail : hkimura@bio.titech.ac.jp
Tel : 045-924-5742 / Fax : 045-924-5973

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661


本学所蔵の光ファイバ通信実験装置が「重要科学技術史資料~未来技術遺産~」に登録

$
0
0

国立科学博物館の「重要科学技術史資料(愛称:未来技術遺産)」に、東京工業大学博物館が所蔵する「世界初の光ファイバ通信実験に用いられた変調素子(ADP結晶)」が登録されました(登録番号:第00272号)。9月10日には東京・上野の国立科学博物館講堂で登録証及び記念盾授与式が行われました。

集合写真

国立科学博物館による「未来技術遺産」の登録制度は、2008年に始まり今年度で12回目を迎えました。日本の科学技術(産業技術を含む)の発展を示す貴重な歴史資料や、国民の生活や経済、社会、文化のあり方に顕著な影響を与えた科学技術に関する史資料を、国の「重要科学技術史資料台帳」に登録。定期的にアフターケアをしていくことで、それぞれの所蔵先(企業や博物館など)での保存を応援するとともに、WEBによる情報公開によって科学技術の開発を担ってきた先人たちの経験を広く伝え、次世代に継承することを目的に創設された制度です。

未来技術遺産 登録パネル展(国立科学博物館 上野本館、9月10日~9月23日開催)

未来技術遺産 登録パネル展(国立科学博物館 上野本館、9月10日~9月23日開催)

今回は、一眼レフカメラの完成形として世界的に評価の高い「ニコンF」(1959年製作)、国産初の使い捨てプラスチック製注射器「無菌注射器 ジンタンシリンジ 5 mL」(1963年製作)、カシオ計算機の耐衝撃腕時計「G-SHOCK」の一号機(1983年製作)など、新たに26件が未来技術遺産に登録されました。

「世界初の光ファイバ通信実験に用いられた変調素子(ADP結晶)」展示パネル
「世界初の光ファイバ通信実験に用いられた変調素子(ADP結晶)」
展示パネル

そしてこれらと並び登録されたのが、東工大博物館2階の常設展示室に展示している光ファイバを用いた通信実験装置です。1963年5月の東工大全学祭において、末松安晴助教授(現 東京工業大学栄誉教授)の指導のもと、世界初の光ファイバ通信の公開実験が行われました。この実験では、マイクロフォンからの音声信号を、ADP(リン酸二水素アンモニウム、Ammonium Dihydrogen Phosphate)結晶を用いた光変調器でHe-Ne(ヘリウム-ネオン)レーザ光にのせガラスの光ファイバ束に通し、受信側では光電子増倍管の受光素子で電気信号に戻して(復調)、その音声信号をアンプで増幅しスピーカーを鳴らしました。

この通信実験が「基本原理は現代のインターネットを支える光ファイバ通信技術と同等であり、通信インフラを支える光通信の可能性を最初期に示したものとして重要である」と評価され、光ファイバ通信時代の幕開けを告げる技術として登録されました。

東京・上野の国立科学博物館講堂で行われた登録証授与式には、末松名誉教授と佐藤勲理事・副学長(企画担当)が出席し、登録証と記念盾が授与されました。

(左)末松名誉教授(右)佐藤理事・副学長(企画担当)
(左)末松名誉教授(右)佐藤理事・副学長(企画担当)

(左)林 国立科学博物館長(右)佐藤 東京工業大学博物館長
(左)国立科学博物館長 林氏(右)東京工業大学博物館長 佐藤氏

なお、常設展示室の実験装置は2008年7月に再現実験を行った際のものであり、今回の登録対象となった資料は当時使用されたADP結晶のみとなります。

お問い合わせ先

東京工業大学 博物館

E-mail : centshiryou@jim.titech.ac.jp

Tel : 03-5734-3340

サリドマイドが手足や耳に奇形を引き起こすメカニズムを解明 安全なサリドマイド系新薬の開発へ

$
0
0

要点

  • サリドマイドは胎児に催奇形性を示す薬剤ですが、サリドマイドはp63というタンパク質の分解を誘導することで手足や耳の発生を阻害していることがゼブラフィッシュのモデル実験系により明らかとなりました。
  • サリドマイドは本研究グループが以前に同定したサリドマイド標的タンパク質、セレブロンに結合し、セレブロンの働きを乗っ取ることで、p63の分解を誘導します。
  • 本成果により、サリドマイド催奇形性の詳細なメカニズムが判明しました。本研究の知見を活かして、サリドマイドの副作用を軽減した新薬が開発されることが期待されます。

東京医科大学 ナノ粒子先端医学応用講座(現・ケミカルバイオロジー講座)の半田宏特任教授(東京工業大学 名誉教授)および伊藤拓水准教授、東京工業大学 生命理工学院の山口雄輝教授、イタリア ミラノ大学のルイーサ・ゲリーニ(Luisa Guerrini)博士らの国際共同研究グループは、サリドマイドの深刻な奇形がp63というタンパク質の分解によって引き起こされることを明らかにしました。

研究グループは2010年、セレブロンというタンパク質がサリドマイドの主要な細胞内標的因子であることを明らかにし、その後の研究から、セレブロンがサリドマイドの多様な薬効の発現に不可欠であることが証明されました。セレブロンはタンパク質の分解を司るユビキチンリガーゼ[用語1]の構成因子であり、サリドマイド系の化合物がセレブロンに結合するとセレブロンの基質特異性が変化して、通常は分解されないタンパク質が分解されるようになります。このように、薬剤依存的に分解されるタンパク質をセレブロンの「ネオ基質」と呼びますが、サリドマイドの催奇形性に関わるネオ基質は未解明でした。

研究グループは本研究で、サリドマイドの催奇形性に関わるネオ基質がp63というタンパク質であることを見出しました。p63タンパク質には大小の2つのタイプがありますが、胎児の発生過程で小さい方が手足の形成に、大きい方が耳の形成に重要な役割を果たしています。脊椎動物のモデル生物であるゼブラフィッシュを用いた解析により、サリドマイドがセレブロンに結合するとp63の大小両方の分解が誘導され、その結果、手足や耳の奇形が引き起こされることが明らかとなりました。

近年、サリドマイド骨格をもつ医薬品の研究開発が精力的に進められていますが、催奇形性のないサリドマイド系化合物はいまだに見つかっておらず、それらの処方は各国の法規に基づく厳格な統制のもと行われています。本研究によりp63の分解が副作用の原因であることが判明しました。p63の分解を誘導しないサリドマイド系化合物を探索することにより、安全性の高い新薬の開発が可能になると考えられます。

研究の背景

サリドマイドは、1950年代に鎮静剤として開発され、日本を含む40数ヵ国で販売されました。しかし、妊娠初期の女性が本薬剤を服用すると胎児の手足や耳などに奇形が生じたことから、世界的な薬害事件に発展し、サリドマイドは1960年代前半に市場から撤退しました。しかしその後、サリドマイドはハンセン病や血液がんの一種である多発生骨髄腫などの難治性疾患に対して優れた治療効果を示すことが分かり、厳格な統制の下での投与が再び認可されるに至りました。しかし、サリドマイド催奇形性のメカニズムは長い間謎に包まれていました。

研究グループは独自技術を用いた薬剤標的因子の探索・同定に長年携わり、2010年にはサリドマイドの主要な細胞内標的因子がセレブロン(CRBN)というタンパク質であることを突き止めました(Science 2010)。セレブロンはタンパク質分解に関わるユビキチンリガーゼという酵素の構成因子です。その後の研究から、サリドマイド系の化合物がセレブロンに結合するとセレブロンの基質特異性が変化して、通常は分解されないタンパク質が分解されるようになることが明らかとなりました。たとえば最近、研究グループは、CC-885というサリドマイド系化合物がセレブロンに結合するとGSPT1というタンパク質の分解が引き起こされ、このことがCC-885の急性白血病に対する治療効果に関わっていることを見出しました(Nature 2016)。GSPT1のようなタンパク質をセレブロンの「ネオ基質」と呼びます。しかし、サリドマイドの催奇形性に関わるセレブロンのネオ基質は未発見でした。

本研究で得られた結果・知見

イタリア・ミラノ大学のルイーサ・ゲリーニ博士は長年にわたって手足や耳の発達を担うp63タンパク質の研究を行ってきました。東京医科大学と東京工業大学の研究グループとゲリーニ博士はp63とサリドマイド催奇形性の関係を検証するために国際共同研究を開始しました。

まずヒト培養細胞を用いた研究により、サリドマイドによってp63の分解が誘導されることや、この分解にはセレブロンによるp63のユビキチン化が関わっていることなどを明らかにしました。

次に、p63が実際にサリドマイドの催奇形性に関与するかどうかについて、ゼブラフィッシュを用いた解析を行いました。p63には大小2つのタイプ(TAp63とΔNp63)が存在しますが、サリドマイドに耐性を与える点変異をもった変異体タンパク質をゼブラフィッシュに強制発現させたところ、TAp63変異体の発現はサリドマイド処理による耳の奇形を抑制し、ΔNp63変異体の発現はサリドマイド処理による胸びれ(手足に相当)の奇形を抑制するという結果が得られました。

過去の研究結果から、TAp63は聴覚の形成に関わることが知られていましたが、本研究によりサリドマイドはTAp63の下流にある聴覚形成関連因子Atoh1の発現を抑制することが分かりました。一方、ΔNp63は手足・胸びれの形成に必須な増殖因子、Fgf8の発現を制御していますが、本研究によりサリドマイドはΔNp63の下流にあるFgf8の発現も抑制することが分かりました。以上の結果から、手足や耳の奇形は、サリドマイドと結合したセレブロンがTAp63とΔNp63の分解を誘導することにより引き起こされるという結論が得られました。

今後の研究展開および波及効果

本研究はサリドマイドの催奇形性に関わるセレブロンのネオ基質がp63であることを明らかにしたものであり、サリドマイド催奇形性に関する長年の謎の解明を一層推し進めるものです。近年、サリドマイド骨格をもつ医薬品の研究開発が精力的に進められており、例えば米国セルジーン社が開発した抗がん剤レブラミドとポマリストは合わせて年間1兆円の世界売上をあげています。しかしこれまでは副作用に関与するネオ基質が不明だったため、催奇形性のない薬剤の開発は困難でした。本研究の成果により、p63の分解を誘導しない安全なサリドマイド系新薬の開発が今後期待されます。

A. ゼブラフィッシュにおけるサリドマイド催奇性の指標。 B. ゼブラフィッシュ胚にサリドマイド(Thal)処理をすると40%以上の個体に深刻な胸びれ形成異常が生じるが、サリドマイドによる分解を受けないΔNp63 G506A変異体を発現させると、胸びの異常が抑えられる。なお野生型ΔNp63の過剰発現でも部分的に奇形は抑えられる。C. サリドマイド処理により耳の形成不全が生じるが、 野生型のTAp63の過剰発現で抑えられる。サイズを計測したところ、サリドマイドによる分解を受けないTAp63 G599A変異体を発現するゼブラフィッシュでは耳の形成不全は抑えられていた。
図1.
A. ゼブラフィッシュにおけるサリドマイド催奇性の指標。 B. ゼブラフィッシュ胚にサリドマイド(Thal)処理をすると40%以上の個体に深刻な胸びれ形成異常が生じるが、サリドマイドによる分解を受けないΔNp63 G506A変異体を発現させると、胸びの異常が抑えられる。なお野生型ΔNp63の過剰発現でも部分的に奇形は抑えられる。C. サリドマイド処理により耳の形成不全が生じるが、 野生型のTAp63の過剰発現で抑えられる。サイズを計測したところ、サリドマイドによる分解を受けないTAp63 G599A変異体を発現するゼブラフィッシュでは耳の形成不全は抑えられていた。
サリドマイド催奇形性のモデル図。まずサリドマイドがセレブロン(CRBN)に結合すると新たにp63タンパク質(ΔNp63、TAp63)を認識し、分解を誘導する。ΔNp63が分解されると四肢・胸びれの形成に重要なFgf8などの発現が低下し、手足の奇形が引き起こされる。一方、TAp63が分解されると、聴覚神経の形成に重要なAtoh1などの発現が低下し、耳の形成異常が引き起こされる。
図2.
サリドマイド催奇形性のモデル図。まずサリドマイドがセレブロン(CRBN)に結合すると新たにp63タンパク質(ΔNp63、TAp63)を認識し、分解を誘導する。ΔNp63が分解されると四肢・胸びれの形成に重要なFgf8などの発現が低下し、手足の奇形が引き起こされる。一方、TAp63が分解されると、聴覚神経の形成に重要なAtoh1などの発現が低下し、耳の形成異常が引き起こされる。

論文情報

掲載誌 :
Nature Chemical Biology
論文タイトル :
p63 is a cereblon substrate involved in thalidomide teratogenicity
著者 :
Tomoko Asatsuma-Okumura, Hideki Ando, Marco De Simone, Junichi Yamamoto, Tomomi Sato, Nobuyuki Shimizu, Kazuhide Asakawa, Yuki Yamaguchi, Takumi Ito, Luisa Guerrini* & Hiroshi Handa*(*共同責任著者)
DOI :

主な競争的研究資金

文部科学省 科学研究費補助金 基盤研究(S)17H06112(半田宏、山口雄輝)

文部科学省 科学研究費補助金 新学術領域研究(研究領域提案型)18H05502(伊藤拓水)

文部科学省 国立研究開発法人科学技術振興機構 戦略的創造研究推進事業 個人型研究(さきがけ)「疾患における代謝産物の解析および代謝制御に基づく革新的医療基盤技術の創出」(伊藤拓水)

ケミカルバイオロジー講座(旧・ナノ粒子先端医学応用講座)

東京医科大学に発足した産学連携講座であり、米国セルジーン社がスポンサーを務めています。

用語説明

[用語1] ユビキチンリガーゼ : ヒトが誕生し成長し死を迎えるように、タンパク質にも合成から分解に至るまでの一生がある。生命活動を行っていく上で、個々のタンパク質の分解は合成と並んで大変重要である。この分解過程に関わる酵素の一種がユビキチンリガーゼである。この酵素は、分解すべきタンパク質にユビキチンと呼ばれる廃棄処理用の目印をくっつける役割を果たす。

<$mt:Include module="#G-11_生命理工学院モジュール" blog_id=69 $>

お問い合わせ先

東京医科大学 ケミカルバイオロジー講座

特任教授 半田宏

E-mail : hhanda@tokyo-med.ac.jp
Tel : 03-5323-3250

東京工業大学 生命理工学院

教授 山口雄輝

E-mail : yyamaguc@bio.titech.ac.jp
Tel : 045-924-5798

取材申し込み先

東京医科大学 総務部広報・社会連携推進課

Tel : 03-3351-6141(代表)

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

分子機械の集団運動制御に世界で初めて成功 省エネルギーな小型デバイスの実現に大きく前進

$
0
0

ポイント

  • 物理的な刺激を加えることで、自走する約1億個の分子機械の集団運動の制御に成功。
  • 分子機械の行動パターンは変調可能で、自己修復する機能も有する。
  • 省エネルギーな小型デバイスの実現や分子群ロボットの制御への応用に期待。

概要

北海道大学 大学院理学研究院の角五彰准教授、井上大介博士、佐田和己教授、岐阜大学 工学部 応用物理コースの新田高洋准教授、東京工業大学 情報理工学院のGreg Gutmann助教、小長谷明彦名誉教授、コロンビア大学 医用生体工学部のHenry Hess教授らの研究グループは、自走する約1億個の分子機械の集団運動を、単純な物理刺激で制御することに成功しました。

群れ(集団)で行動する鳥や魚、細胞などは様々なスケールで自発的にパターンを形成します。タンパク質からなる分子機械も、集団となることで様々なパターンを形成します。これらの分子機械は、電気や熱のエネルギーではなく、化学エネルギーで駆動するのが特徴です。集団運動する分子機械は、優れたエネルギー変換効率と高い比出力特性を有しているため、分子群ロボットや超小型 デバイスなどの動力源として期待されています。しかし、これまでそのような分子機械の群れのパターンを制御することは出来ていませんでした。

本研究では、自走する約1億個の分子機械に伸張や圧縮などの単純な物理刺激を加えることで、群れのパターンを制御できることを見出しました。また、この群れのパターンをかき乱しても、直ちに自己修復されることもわかりました。

本成果は、省エネルギーな小型デバイスの実現を前進させるだけでなく、研究グループが開発してきた分子群ロボット制御への応用も期待されます。

なお、北海道大学が集団運動する分子機械の制御法を考案・実証し、岐阜大学、東京工業大学、コロンビア大学がコンピューターシミュレーションなどによる理論構築を担当しました。

また、本研究成果は、2019年10月4日(金)公開のアメリカ化学会刊行ACS Nano誌に掲載されました。

外部刺激による分子機械の集団運動制御のイメージ図

外部刺激による分子機械の集団運動制御のイメージ図

背景

「分子機械」は、SF映画の中の用語でした。しかし、近年発展したナノテクノロジーによって様々な分子機械が実現され、さらに2016年には分子機械を設計・合成した欧米の研究者3名がノーベル賞を受賞し、現在注目を集めています。ただ、自走する分子機械についての研究はまだ新しい分野であり、体系的な学問もありません。

研究グループは、これらの分子機械に着目し、自発的に群れを形成する世界最小のロボット(分子群ロボット)を開発してきました(Nature Communications 2018, 9,453outer)。これらの分子群ロボットは、キネシン/微小管[用語1]というタンパク質からなる分子機械によって駆動されています。この分子機械は、化学エネルギー(アデノシン三リン酸:ATP)を高効率に利用して動く特徴があります(単位重さあたりの出力が一般的な電磁モーターの20倍)。このように分子群ロボットの群れを利用することで、単体では成しえないような仕事をさせることができます。

しかし、分子群ロボットのサイズはマイクロメートルと小さく、分子群ロボットの群れを制御する方法論の確立が課題となっていました。本研究では、自走する約1億個の分子機械に伸張や圧縮などの物理刺激を加えることで、その集団運動を制御可能であることを世界にさきがけて実証しました。

研究手法及び研究結果

本研究で用いた分子機械は、バイオエンジニアリングにより作られたタンパク質「キネシン」と「微小管」から構成されています。伸縮可能な基板表面にキネシンを固定し、ATP存在下で微小管を基板上で自走させます(図1)。次に、この基板を伸縮させることで、基板表面で自走する約1億個の微小管に物理的な刺激を与えて微小管の運動方向を制御します。基板を1.3倍以上伸縮すると、約1億本の微小管のほぼ全てが伸縮方向に対して垂直に並び、基板を1.3倍以下で繰り返し伸縮すると、対角線方向に並んで運動することがわかりました(図2、3)。さらに、基板を放射線状に伸縮すると微小管が同心円状に並ぶことも見出しました(図4)。この微小管の運動パターンは、新たな物理刺激を与えることにより変調可能で、微小管の配列に欠陥が生じても自己修復されることも見出しました。また、シミュレーションにより、微小管の規則的な配列メカニズムは微小管の変形と関係があることや、微小管の集団運動が微小管の配列を促進していることもわかりました(図5)。

(a)キネシンを固定したソフトゴム基板上で微小管を運動させる方法の模式図。黒矢印は微小管の運動方向を示す。(b)小規模なウェーブ状の配列を形成して運動する微小管の蛍光顕微鏡画像。※ スケールバー:50 μm
図1.
(a)キネシンを固定したソフトゴム基板上で微小管を運動させる方法の模式図。黒矢印は微小管の運動方向を示す。
(b)小規模なウェーブ状の配列を形成して運動する微小管の蛍光顕微鏡画像。
※ スケールバー:50 μm
(a)運動する微小管に伸縮刺激を与える方法。(b)刺激の種類に応じた微小管の異なる運動モード。※ (i)伸縮軸に対して垂直方向に配列して動く微小管及び(ii)対角線上に並んで動く微小管の蛍光顕微鏡画像。伸縮刺激の条件はそれぞれ(i)伸び率:75%、伸縮速度1.2%/s, (ii)伸び率:20%、伸縮周波数0.5 Hz。黒い両矢印は伸縮軸を示す。スケールバー:50μm。顕微鏡の視野に対して、微小管全体のスケールが大きすぎるため、(i)(ii)いずれも全体の一部のみを表示している。
図2.
(a)運動する微小管に伸縮刺激を与える方法。(b)刺激の種類に応じた微小管の異なる運動モード。
※ (i)伸縮軸に対して垂直方向に配列して動く微小管及び(ii)対角線上に並んで動く微小管の蛍光顕微鏡画像。伸縮刺激の条件はそれぞれ(i)伸び率:75%、伸縮速度1.2%/s, (ii)伸び率:20%、伸縮周波数0.5 Hz。黒い両矢印は伸縮軸を示す。スケールバー:50μm。顕微鏡の視野に対して、微小管全体のスケールが大きすぎるため、(i)(ii)いずれも全体の一部のみを表示している。
新たな刺激を与えたことによる微小管の運動モードの変調。繰り返し与えた伸縮刺激によって、対角線上に並んで動く微小管に対し、より大きな伸縮刺激を与えた。刺激後、微小管は伸縮軸に対して 垂直方向に並んで動いた。スケールバー:50 μm。
図3.
新たな刺激を与えたことによる微小管の運動モードの変調。繰り返し与えた伸縮刺激によって、対角線上に並んで動く微小管に対し、より大きな伸縮刺激を与えた。刺激後、微小管は伸縮軸に対して垂直方向に並んで動いた。スケールバー:50 μm。
微小管円運動の発現。(a)伸縮刺激の模式図。ソフト基板の中心を押し上げ、その後、初期状態に戻した。基板の伸縮軸は押し上げた部位を中心に放射状になる。(b)同心円状に配列して円運動をする微小管の蛍光顕微鏡画像。円運動する微小管全体の直径は、使用した基板のサイズである1.5 cm。スケールバー:1 mm。(c)同心円状配列内に生じた欠陥の自己修復。同心円に並ぶ微小管の一部を削り、破損させた(黒破線の右側)。破損部位は、欠陥部位の周囲の微小管によって時間と共に自己修復された(青破線は修復部位の前線)。スケールバー:250 μm。
図4.
微小管円運動の発現。
(a)伸縮刺激の模式図。ソフト基板の中心を押し上げ、その後、初期状態に戻した。基板の伸縮軸は押し上げた部位を中心に放射状になる。
(b)同心円状に配列して円運動をする微小管の蛍光顕微鏡画像。円運動する微小管全体の直径は、使用した基板のサイズである1.5 cm。スケールバー:1 mm。
(c)同心円状配列内に生じた欠陥の自己修復。同心円に並ぶ微小管の一部を削り、破損させた(黒破線の右側)。破損部位は、欠陥部位の周囲の微小管によって時間と共に自己修復された(青破線は修復部位の前線)。スケールバー:250 μm。
微小管の配列シミュレーション。微小管ははじめランダムな配列。伸縮刺激がない場合を仮定すると、微小管は実験と同様、不規則なウェーブ状の配列で動く。伸縮刺激がある場合を仮定すると、刺激により一部の微小管が特定の方向に向く(赤)と想定される。この一部の配列した微小管は周りの配列していない微小管(緑)を牽引し、最終的に全体の微小管(緑+赤)が同一方向に配列して運動する。
図5.
微小管の配列シミュレーション。微小管ははじめランダムな配列。伸縮刺激がない場合を仮定すると、微小管は実験と同様、不規則なウェーブ状の配列で動く。伸縮刺激がある場合を仮定すると、刺激により一部の微小管が特定の方向に向く(赤)と想定される。この一部の配列した微小管は周りの配列していない微小管(緑)を牽引し、最終的に全体の微小管(緑+赤)が同一方向に配列して運動する。

今後への期待

本研究成果は、集団運動する分子機械の学問体系の構築に貢献するだけでなく、化学エネルギーで高効率に動き、自己修復など優れた機能を持つ小型デバイスの実現や、研究グループが開発してきた分子群ロボット制御への応用にも期待が持たれます。

謝辞

本研究は、文部科学省科学研究費助成事業新学術領域研究「分子ロボティクス」(24104004)、「発動分子科学」(18H05423)、基盤研究(A)(18H03673)及び日本学術振興会特別研究員奨励費(14J02648)の支援を受けて行われました。

用語説明

[用語1] キネシン/微小管 : 分子機械は、遺伝子工学的に作られたモーター「キネシン」と繊維状タンパク質の「微小管」がセットになって動くことで機能する。キネシンと微小管は、細胞内における物質輸送システムなどを構築する細胞の動力。微小管は直径25 nm、長さ約数十μ mの細胞内に存在する非常に細い繊維(図1)(1 nmは10億分の1 m、1μ mは100万分の1 m。参考:髪の毛の直径が60~100 μmで、微小管は髪の毛の3,000分の1程度の太さ)。本研究で用いられたキネシンは、全長が15 nm程度のタンパク質で、2つの微小管結合部位をもつ。この微小管結合部位が、生物燃料であるATPを消費して交互に微小管に結合することで、微小管表面を二足歩行する。

論文情報

掲載誌 :
ACS Nano(アメリカ化学会の専門誌)
論文タイトル :
Adaptation of Patterns of Motile Filaments under Dynamic Boundary Conditions(動的境界条件下における運動性フィラメントのパターン適応)
著者 :

井上大介1、Greg Gutmann2、新田高洋3、Arif Md. Rashedul Kabir1、小長谷明彦2、徳楽清孝4, 佐田和己1、Henry Hess5、角五彰1

所属 :
1北海道大学 大学院理学研究院
2東京工業 大学情報理工学院
3岐阜大学 工学部応用物理コース
4室蘭工業大学 大学院工学研究科
5コロンビア大学 医用生体工学部
DOI :
公表日 :
2019年10月4日(金)(オンライン公開)
<$mt:Include module="#G-09_情報理工学院モジュール" blog_id=69 $>

お問い合わせ先

北海道大学 大学院理学研究院 化学部門 准教授 角五彰

E-mail : kakugo@sci.hokudai.ac.jp

Tel : 011-706-3474 / Fax : 011-706-3474

岐阜大学 工学部 応用物理コース 准教授 新田高洋

E-mail : nittat@gifu-u.ac.jp

Tel : 058-293-2551 / Fax : 058-293-2415

東京工業大学 情報理工学院 名誉教授 小長谷明彦

E-mail : kona@c.titech.ac.jp

Tel : 045-924-5655 / Fax : 045-924-5655

配信元

北海道大学 総務企画部 広報課

E-mail : kouhou@jimu.hokudai.ac.jp

Tel : 011-706-2610 / Fax : 011-706-2092

岐阜大学 総合企画部 総務課 広報室

E-mail : kohositu@gifu-u.ac.jp

Tel : 058-293-3377 / Fax : 058-293-2021

配信元 及び 取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp

Tel : 03-5734-2975 / Fax : 03-5734-3661

線形加速器を用いた透過型電子顕微鏡を開発 コンパクトな装置で高い加速の電子ビームによる顕微観察に成功

$
0
0

今回の発見

1.
マイクロ波を用いて電子を加速する線形加速器を導入した透過型電子顕微鏡を開発し、顕微観察に成功しました。
2.
従来問題であった加速エネルギーのばらつきの問題を解決する新しい高周波チョッパを開発し、線形加速器の導入と顕微鏡分解能を両立させました。
3.
試料部の前後に線形加速器と線形減速器を導入し、試料部だけを高加速化するコンパクトな超高圧電子顕微鏡の原理実証に成功しました。

概要

高い加速エネルギーの電子ビームを用いる超高圧電子顕微鏡は、厚い試料を透過観察でき、細胞などの内部構造を3次元的に再構成できるなど、極めて有用な観察手法です。従来、電子ビームの加速には直流高電圧を使用するため、大型で専用の建屋を必要とするなど、極めて高価な装置となる問題がありました。今回、東京工業大学 物質理工学院 材料系の三宮工准教授、テラベース株式会社の新井善博代表取締役、生理学研究所の永山國昭名誉教授、高エネルギー加速器研究機構の永谷幸則特別准教授らの研究グループは、日本電子株式会社の協力により、小型でありながら効率的に電子ビームを加速する線形加速器と、新規な精密ビーム制御技術を電子顕微鏡に導入することにより、既存の研究室にも収容可能な程にコンパクトな超高圧電子顕微鏡を開発、顕微鏡像観察が可能であることを実証しました。本成果は、2019年10月9日(日本時間)に米国Physical Review Letters誌に掲載されました。

研究の背景と成果

透過型電子顕微鏡は、試料に電子ビームを当て透過した電子ビームに含まれる試料の情報を高い分解能の像として取得する方法として、広く用いられている観察手法です。しかし通常の透過型電子顕微鏡では電子ビームは厚い試料を透過できないため、試料を数百ナノメートル未満に極薄片化しておく必要があります。より厚い試料を透過観察するには、500 keV[用語1]以上の高いエネルギーまで加速した電子を用いる超高圧電子顕微鏡が用いられます。超高圧電子顕微鏡は、試料を回転させながら複数の透過撮影像と、コンピューターによる再構成(トモグラフィ)によりナノスケールの3次元的な構造を観ることができるため、物質材料科学研究や医学生物学研究などで使用される極めて有用な観察手法です。

しかしながら超高圧電子顕微鏡は直流の高電圧を用いて電子ビームを加速する手法を採っているため、装置が巨大化し高額な装置となってしまう問題点があり、現に稼働中の超高圧電子顕微鏡は国内に数台しかありません。直流の高電圧を保持するには、圧縮した絶縁ガスを詰めた大型タンクの内部に電子ビーム源や加速電極を収納する必要があり、さらにそのタンクを地面の振動から隔離するため除振台に載せる必要などから、専用の建屋までもが必要となり、普及を阻んできました。

そこで研究グループは線形加速器[用語2]を用いて電子ビームを加速する方法に注目しました。マイクロ波を用いて電子ビームなどを波乗り的に加速する線形加速器は、小型でありながら高いエネルギーまでビームを加速する能力があり、素粒子実験に用いられる巨大な加速器施設から医療用の小型加速器まで、広く利用されています。

この線形加速器を電子顕微鏡に導入することにより、研究グループは、既存の研究室にも導入できるコンパクトな電子顕微鏡の開発を自然科学研究機構 生理学研究所において進めてきました。図1に開発された装置の写真および構造を示します。この際に最大の問題となるのが電子ビームの加速エネルギーの安定性の問題でした。図2の赤曲線で示す様に、線形加速器は電子をマイクロ波への波乗りで加速するため、波に乗れた電子と乗れなかった電子で加速エネルギーに差異が生じます。電子顕微鏡は磁場を用いて電子ビームを収束し結像させる電子レンズを用いますが、加速エネルギーが揃っていない電子ビームでは磁場による曲がり方にもばらつきが生じ、色収差[用語3]によりピンボケ像となってしまいます。これまで、電子顕微鏡に線形加速器が導入されてこなかった最大の理由は、この加速エネルギーが一定でないことによる色収差の問題を解決できないことにありました。

開発した電子顕微鏡の写真および構成図

図1. 開発した電子顕微鏡の写真および構成図


最上部の電界放出型電子銃で生成された高い品質(高い時空間コヒーレンス)をもつ100 keVの電子ビームは、2台の高周波偏向空洞、チョッパスリットおよびチョッパレンズから構成される高周波チョッパにより、その品質を保ったまま、2.45 GHzのマイクロ波に同期したサブピコ秒のパルス電子ビームとして切り出されます。同一のマイクロ波源で駆動される線形加速器に最適のタイミングで入射された電子は安定して500 keVまで加速され、試料を透過します。試料を透過した電子ビームは、試料の像を保ったまま線形減速器で200 keVまで減速されます。直流高電圧は最高でも100 kVまでしか用いず、試料部だけが高加速でその前後は低加速なため、装置全体がコンパクトになります。写真の青色部分に線形加速器と線形減速器が収納されており、その間が試料部となります。

エネルギーのばらつき問題とチョッパによる解決

図2. エネルギーのばらつき問題とチョッパによる解決


線形加速器において、電子は加速器の内部の空洞で共振する強いマイクロ波の電場により加速されます。マイクロ波はまさしく「波」であり、図の赤曲線で示す様にその電場は最大加速から最大減速まで振動しています。このため、単に電子を投入しただけでは、その投入タイミングにより最大加速されることもあれば最大減速されることもあり、加速エネルギーは大きくばらついてしまい、電子顕微鏡には使えません。これを解決するため、加速が安定する山の頂上付近だけに電子を投入する装置が高周波チョッパです。マイクロ波の周波数(2.45 GHz)の周期で訪れる、サブピコ秒の時間帯にのみ電子を線形加速器に供給し、最大加速に電子のエネルギーを揃えます。

研究グループは、高分解能の電子顕微鏡に使われている電界放出型電子銃を用い、そこから得られる高い品質の電子ビームから、波に乗れる電子だけを切り出す高周波チョッパ[用語4]を開発し、これを線形加速器の前に挿入することにより、色収差の問題を解決しました。開発した高周波チョッパは、電子ビームの品質を示す時間コヒーレンス[用語5]と空間コヒーレンスを維持したまま、周波数が2.45 GHzのマイクロ波に同期して、サブピコ秒のパルスを切り出す事ができます。2つの高周波偏向空洞[用語6]とスリットを含むレンズ光学系の組み合わせにより実現された革新的な技術です。この新開発した高周波チョッパを用いて、線形加速器で200 keVまで加速した電子ビームを用いて電子顕微鏡観察した結果、サブナノメートルの分解能が得られる事を実証しました。

また、電子顕微鏡において電子ビームを収束させたり、拡大・結像させたりする電子レンズの光学系は、高いエネルギーに加速された電子ビームでは大型化してしまう問題があります。これを解決するため、試料を透過した電子ビームを減速させてから、後段の電子光学系に投入する方法を採用しました。線形減速器[用語7]はマイクロ波を用いて電子ビームを効率的に減速できます。そこで、研究グループは線形減速器を使用して試料の像に対応する電子ビームの波動関数の情報を保ったまま電子ビームを減速させました。その結果、試料を透過した電子ビームを線形減速器で減速した後の低加速のビームからも、試料の像が得られることを実証しました。

今回の研究では、試料部の前に線形加速器、後に線形減速器を導入することで、試料部だけを高加速化し、それ以外は低加速で構成する、コンパクトな超高圧電子顕微鏡の開発に成功しました。開発された装置の全高は3.75 mとなり、多くの既存の研究室に設置可能な大きさとなりました。これまで超高圧電子顕微鏡は、その有用性にもかかわらず、設備投資的な問題点から普及が阻まれてきましたが、今回の研究によって、超高圧電子顕微鏡の広い普及につながると期待されます。

この研究の社会的意義

専用建屋を必要とする大型で高額な超高圧電子顕微鏡が、既存の研究室に導入できる程にコンパクトになり、これまでは国内に数台しかなかった超高圧電子顕微鏡が広く普及すると期待されます。細胞や材料など厚い試料の透過型電子顕微鏡観察が一般化すると考えられます。

助成金などの情報

本研究は文部科学省科学研究費補助金、JSTさきがけ、日本電子株式会社の協力を受けて行われました。

用語説明

[用語1] keV : 粒子のエネルギーの単位。500 keVの電子ビームは、電子を50万V(ボルト)の電位差で加速することで得られ、その速度は光の速度の86パーセント程となる。

[用語2] 線形加速器 : マイクロ波などの高周波の電磁波を用いて荷電粒子を直線的に加速する装置。空洞への電磁波の共鳴による強い電場を利用する。

[用語3] 色収差 : 電子顕微鏡などに用いられる電子レンズの焦点距離が、電子ビームのエネルギーに依存して変動する現象。エネルギーの高い電子ビームほど磁場で曲がりにくい事が原因である。電子ビームのエネルギーにばらつきがあると、それに応じて電子レンズの焦点距離もばらつき、焦点ボケが生じる。

[用語4] チョッパ : 特定のタイミングで、時間的に連続するビームからパルスを切り出す装置。

[用語5] コヒーレンス : ビームの波としての干渉性とその尺度。時間的コヒーレンスと空間的コヒーレンスに分けられる。ビームのエネルギーが揃っていると時間コヒーレンスが高く、ビームの向きが揃っていると空間コヒーレンスが高い。電子顕微鏡は電子ビームの干渉性を利用して像を得るため、時間的および空間的な両方のコヒーレンスの高いビームを用いる必要がある。

[用語6] 高周波偏向空洞 : 高周波の電磁波を用いて荷電粒子の向きを左右に振る装置。空洞への電磁波の共鳴による強い電場を利用し、電磁波に同期してビームを振る。

[用語7] 線形減速器 : 線形加速器の配置を前後逆にし、ビームの加速ではなく減速に用いる装置。

論文情報

掲載誌 :
Physical Review Letters
論文タイトル :
Transmission Electron Microscope Using a Linear Accelerator.
著者 :
Takumi Sannomiya, Yoshihiro Arai, Kuniaki Nagayama, and Yukinori
DOI :

お問い合わせ先

東京工業大学 物質理工学院 材料系

准教授 三宮工

E-mail : sannomiya.t.aa@m.titech.ac.jp

テラベース株式会社

代表取締役 新井善博

E-mail : arai@terabase.co.jp

自然科学研究機構 生理学研究所

名誉教授 永山國昭

E-mail : nagayama@nips.ac.jp

所長 鍋倉淳一

E-mail : nabekura@nips.ac.jp

高エネルギー加速器研究機構 物質構造科学研究所

特別准教授 永谷幸則

E-mail : nagatan@post.kek.jp

取材申し込み先

大学共同利用機関法人 自然科学研究機構 生理学研究所 研究力強化戦略室

E-mail : pub-adm@nips.ac.jp
Tel : 0564-55-7722 / Fax : 0564-55-7721

大学共同利用機関法人 高エネルギー加速器研究機構 広報室

E-mail : press@kek.jp
Tel : 029-879-6047 / Fax : 029-879-6049

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

クライオ蛍光顕微鏡で分子イメージングに成功 鍵はナノレベルのピント合わせにあり

$
0
0

要点

  • ナノメートル正確度のクライオ蛍光顕微鏡が完成
  • 通常の蛍光顕微鏡に比べて2桁高い正確度
  • 長さ10ナノメートルの二本鎖DNAの両末端を1分子ごとに可視化

概要

東京工業大学 理学院 物理学系の古林琢大学院生、石田啓太大学院生、松下道雄准教授、藤芳暁助教と名古屋大学の樫田啓准教授、京都大学の中田栄司准教授、森井孝教授との共同研究グループは、クライオ蛍光顕微鏡[用語1]によって二本鎖DNA[用語2]分子イメージング[用語3]に成功した。

同研究グループは2007年に1 nm(ナノメートル、100万分の1 cm)の位置精度[用語4]を持つクライオ蛍光顕微鏡を開発、この顕微鏡を用いて、5'末端と3'末端[用語5]にそれぞれ違う色の蛍光体を結合させた二本鎖DNAを1分子観察した。二本鎖DNAの長さは10 nmであり、1 nmの空間精度があれば画像化できると考えていた。しかし、実際に観測された色素間の距離は0~50 nmに分布しており、大きな系統誤差[用語6]が発生していることが分かった。系統誤差の原因がピントボケであることを突き止め、個々の画像のピントもナノレベルで調整した。その結果、正確度[用語7]がナノレベルに向上し、長さ10 nmの二本鎖DNAを1分子ごとに画像化することに成功した。10 nmは生体分子間の距離に相当し、本研究は生命現象の光イメージングに向けた大きな一歩である。この研究成果は2019年9月17日(米国時間)に米国化学会誌「The Journal of Physical Chemistry Letters」のオンライン速報版で公開された。

研究の背景と成果

これまで分子生物学では、主に1個ないし少数の生体分子の立体構造を観察することで、生命の理解を深めてきた。この研究をさらに進めるためには、細胞内部の系全体を俯瞰することが大切である。なぜならば、生体機能は複数の分子が関与する多段階の現象がある方向性を持って進むことで発現しているからである。しかし、現在の技術では細胞内部を分子レベルで観察することは不可能であり、もちろん、このような複数の分子のマクロな集合状態を可視化することはできなかった。そこで同研究グループは、このようなイメージングを実現するため、極低温に冷却した試料の蛍光顕微鏡(クライオ蛍光顕微鏡)を独自に開発した。その結果、2017年に色素1分子の三次元位置を1 nmの空間精度で決定することに成功した。

本研究ではクライオ蛍光顕微鏡を多数の分子間イメージングに利用するために、二本鎖DNAをテスト分子として評価をおこなった。図1Aに用いた二本鎖DNAの模式図を示す。二本鎖DNAの長さは10.2 nmであり、その5'および3'末端に、それぞれ、近赤外と赤色の蛍光を発する色素を結合させた。DNAの塩基数は30であり、剛直な棒状になっていると考えられる。図1Bは温度−271 ℃で観察した色素修飾DNAの1分子イメージの結果である。1個のDNAに分子に対して4回測定したので、各色素の測定点が4個ずつある。それぞれの図を見ると分かるように、5'と3'末端がはっきりと観測されており、DNAの向きや長さが分かる。通常の蛍光顕微鏡の正確度は蛍光波長(数百nm)程度であり、開発したクライオ蛍光顕微鏡では2桁高い、5 nmに達している。

クライオ蛍光顕微鏡による二本鎖DNAの1分子イメージング(観察温度:−271 ℃)3つの図はそれぞれ異なる3つのDNA分子の結果である。各DNA分子を4回ずつ測定しており、それぞれの4個の測定点がある。5'末端の位置を三角(△)、3'末端の位置を丸(○)で表している。図から分かるように、一つ一つの二本鎖DNA分子の長さや向きが可視化されている。
図1.
クライオ蛍光顕微鏡による二本鎖DNAの1分子イメージング(観察温度:−271 ℃)3つの図はそれぞれ異なる3つのDNA分子の結果である。各DNA分子を4回ずつ測定しており、それぞれの4個の測定点がある。5'末端の位置を三角(△)、3'末端の位置を丸(○)で表している。図から分かるように、一つ一つの二本鎖DNA分子の長さや向きが可視化されている。

系統誤差について

ここで、色素1分子の位置決定における系統誤差を実験的に示す。図2は、対物レンズを基準として色素の奥行き方向の位置(z)を±300 nmに変えて、2つの色素間距離を観察した結果である。図から分かるように、zの位置に応じて色素の位置が50 nm以上変化している。光学顕微鏡のピントは、光学の原理上、±300 nm程度ずれている。このため、光学顕微鏡では、ピントのボケに応じた色素の位置のシフトが生じていることが分かった。そこで、本研究グループは、個々のDNAに対して、ナノレベルのピント合わせ(10 nmの位置精度)を行い、系統誤差を補正することで、図1のような分子イメージングを実現した。

このピントに依存したシフトは、色素の配向に由来していると考えている。クライオ条件では、色素分子の回転が完全に凍結している。このため、色素1分子からの蛍光光は空間的に非対称な双極子輻射として取り扱わなければいけない。この空間的に非対称な輻射がシフトを引き起こしていると考えている。

ナノレベルの色素間距離の1分子イメージングに現れる系統誤差(観察温度: −271 ℃)対物レンズを基準として色素の奥行き方向の位置(z)を±300 nm変えた時に、観測された各色素の位置。図1Aと同じく10 nmの長さのDNAの両端に赤色と近赤外蛍光性の色素を結合させている。3つの画像は一つのDNA分子を測定したものである。また、図1に比べて縦横の軸が5倍であり、約±50 nmのシフトであることに注意してほしい。
図2.
ナノレベルの色素間距離の1分子イメージングに現れる系統誤差(観察温度: −271 ℃)対物レンズを基準として色素の奥行き方向の位置(z)を±300 nm変えた時に、観測された各色素の位置。図1Aと同じく10 nmの長さのDNAの両端に赤色と近赤外蛍光性の色素を結合させている。3つの画像は一つのDNA分子を測定したものである。また、図1に比べて縦横の軸が5倍であり、約±50 nmのシフトであることに注意してほしい。

図3は、二本鎖DNAの両端に結合した2つの色素間距離の分布である。図3左は96個のDNA分子、右は20個について測定した結果である。左はピントに依存した系統誤差を補正しない場合、右は補正した場合である。二本鎖DNAの長さは10.2 nmである。補正しない場合には、色素間距離が0から50 nmに分布した。一方、系統誤差を補正すると、DNAの長さを中心とした分布となった。正確度に換算すると5 nmであり、分子レベルに到達している。

色素間距離の1分子測定の結果(観察温度: −271 ℃)。(左)補正無し、(右)補正有り。DNA分子は図1Aと同じ。

図3. 色素間距離の1分子測定の結果(観察温度: −271 ℃)。(左)補正無し、(右)補正有り。DNA分子は図1Aと同じ。

クライオ蛍光顕微鏡(通算19台目)を前に。第一著者の古林琢(左)と第二著者の石田啓太(右)

図4. クライオ蛍光顕微鏡(通算19台目)を前に。第一著者の古林琢(左)と第二著者の石田啓太(右)

今後の展開

近い将来、ナノメートル正確度のクライオ蛍光顕微鏡によって、前人未踏の生命現象の分子レベルの可視化が実現すると考えている。ここから得られるナノレベル空間情報は、これまで人類が蓄積してきた膨大な生命に関する情報をつなげ、多くの生命の謎が解けてくるはずである。

用語説明

[用語1] クライオ蛍光顕微鏡 : 極低温に冷やした試料からの蛍光を観察する顕微鏡。極低温下では分子の動きが完全に止めることができるため、高解像度な観察が可能になる。また、蛍光顕微鏡は1分子観察や厚みのある試料の観察が出来るので、生体試料への相性がとても良い。

[用語2] DNA : デオキシリボ核酸のこと。

[用語3] 分子イメージング : この記事では、分子サイズと同等以上の正確度で、1分子の空間配置を画像化することを指している。

[用語4] 精度(precision) : 繰り返し測定をした時、平均値からのバラツキの程度。精度が高いとは、偶然誤差が小さいことを言う。

[用語5] 5'(prime)末端と3'(prime)末端 : DNAの両方の末端をそれぞれ5'末端と3'末端と呼ぶ。

[用語6] 系統誤差(systematic error) : 測定値が真の値から偏ることによる誤差。

[用語7] 正確度(accuracy) : 真の値からのバラツキの程度。正確度が高いとは、偶然誤差と系統誤差が小さいことを言う。

論文情報

掲載誌 :
The Journal of Physical Chemistry Letters
論文タイトル :
Nanometer accuracy in cryogenic far-field localization microscopy of individual molecules
著者 :
古林琢、石田啓太、樫田啓、中田栄司、森井孝、松下道雄、藤芳暁
DOI :

謝辞

JST/CREST統合1細胞解析のための革新的技術基盤、研究総括:菅野 純夫」(研究課題名「超解像3次元ライブイメージングによるゲノムDNAの構造、エピゲノム状態、転写因子動態の経時的計測と操作」、研究代表者:岡田 康志)および「JST/さきがけ 統合1細胞解析のための革新的技術基盤、研究総括 浜地 格)」(研究課題名「細胞内部を観る分子解像度の三次元蛍光顕微鏡」、研究代表者:藤芳 暁)の支援を受けて実施した。

<$mt:Include module="#G-03_理学院モジュール" blog_id=69 $>

お問い合わせ先

東京工業大学 理学院 物理学系

助教 藤芳暁

E-mail : fujiyoshi@phys.titech.ac.jp

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp

Tel : 03-5734-2975 / Fax : 03-5734-3661

ペロブスカイトナノ粒子LEDはなぜ低効率か ブリンキングによる消光時間の増加が原因と究明

$
0
0

要点

  • 超解像顕微鏡により発光ダイオード中のペロブスカイト粒子の発光を解析
  • ナノ凝集体中の一部のナノ粒子のみで電界発光が生じていることを確認
  • 上記一部のナノ粒子の電界発光の点滅度合いの増加が低い電光変換の原因

概要

東京工業大学 物質理工学院 材料系のマーティン・バッハ教授らの研究グループは、単一粒子分光計測[用語1]を用いて、ペロブスカイト[用語2]ナノ粒子[用語3]を発光材料として用いた発光ダイオード(LED)[用語4]における低い電光変換効率[用語5]の原因を解明した。

同研究グループは単一粒子分光計測の手法を用い、LED駆動時にはナノ凝集体中の一部のナノ粒子に向けて電荷やエネルギーが移動し、その一部の特定のナノ粒子からのみ発光が生じていることを明らかにした。さらに発光を示す一部のナノ粒子ではブリンキング[用語6]が生じやすく、ブリンキングによる消光時間の増加が原因で、電気エネルギーが光に変換されにくくなっていることを確認した。

ペロブスカイト系ナノ粒子の一部は鮮やか、かつ高効率な発光を示すため、薄膜ディスプレイやレーザー用の発光材料として期待されている。だが、高効率で発光する粒子のナノ凝集体を薄膜LEDの発光層として用いると、しばしばLED駆動時に発光効率が著しく低下することが知られていた。しかし、その根本的な原因はわかっていなかった。

研究成果は10月3日発行の国際学術雑誌「ネイチャーコミュニュケーション(Nature Communications)」のオンライン版に掲載された。

研究成果

バッハ教授の研究グループは単一粒子分光の手法を用いてペロブスカイト粒子のナノ凝集体を発光層に有するLEDの発光挙動の解析を進めた。LED駆動時には、ナノ凝集体中では一部のナノ粒子のみでブリンキングを伴う発光が生じており、そのブリンキングによる非発光時間の増加がペロブスカイトLEDの低い電光変換効率の原因となっていることを発見した。

この成果は、ペロブスカイトナノ粒子の表面状態の制御が、電光変換効率の高いペロブスカイトLEDを実現するために重要であるという知見を与えるものである。

研究の背景

ペロブスカイトナノ粒子の一部は、電荷輸送能に優れるだけでなく大きな光吸収能力、高効率発光、さらに発光色が鮮やかであるなどの優れた光物性を持ち合わせている。さらに、そのナノ粒子は安価に作製できるだけでなく、ナノ粒子の薄膜を印刷法で成膜することができるため、より低コストでデバイスの作製が可能である。

そのため、薄膜ディスプレイ、照明、そしてレーザーなどに用いられている発光体の代替材料として期待されている。しかし、ペロブスカイトナノ粒子をLED中の発光層の材料として用いると、紫外線照射時に観測される大きな発光収率に反して、しばしば電光変換効率が低くなるという問題があった。

研究の経緯

バッハ教授らはオレイン酸(植物油に多く含まれている不飽和脂肪酸)で表面修飾されたCsPbBr3(セシウム鉛臭化物)のペロブスカイトナノ粒子を発光層に有する薄膜LEDを作製し、単一粒子分光の計測技術を用いてその発光層中のCsPbBr3粒子のナノ凝集体(図1a)の光励起時の発光(PL)[用語7]および電界発光(EL)[用語8]を比較した。

研究グループは、PLにおいてはナノ凝集体中のナノ粒子の100%近くが発光に関与しているのに対し(図1b)、ELでは全体の3個から7個のナノ粒子しか発光に関与していないことを確認した(図1c)。さらにナノ凝集体中ではナノ粒子のサイズにわずかな分布があり、EL駆動時にはナノ凝集体表面の粒子にホールや電子が注入された後、ホールや電子がより大きなナノ粒子に向けて拡散してトラップされ、一部のナノ粒子からしか発光が生じていないことを確認した。

PLでは各ナノ粒子が発光しており個々のナノ凝集体のブリンキングも生じにくい一方で、ELを放射しているナノ粒子ではブリンキングがより顕著に生じることを見出した。そのELでの激しいブリンキングのため、発光しない時間が長くなっており、これが要因でLED駆動下での電光変換効率が理想状態の1/3程度にまで低下していることを突き止めた。

単一粒子分光計測によるCsPbBr3粒子のナノ凝集体の発光特性 (a)各々のナノ凝集体の発光イメージ(b)PL時のナノ凝集体の発光の時間変化とナノ凝集体内の発光スキーム (c)EL時のナノ凝集体の発光の時間変化とナノ凝集体内の発光スキーム
図1.
単一粒子分光計測によるCsPbBr3粒子のナノ凝集体の発光特性 (a)各々のナノ凝集体の発光イメージ(b)PL時のナノ凝集体の発光の時間変化とナノ凝集体内の発光スキーム(c)EL時のナノ凝集体の発光の時間変化とナノ凝集体内の発光スキーム

今後の展開

この成果は、高効率LEDに向けたペロブスカイト材料の改良に必要となる重要なポイントを単一粒子分光の手法を用いて明らかにしたものである。今後より電光変換効率の高いペロブスカイトLEDを実現するための方策の一つとして、ペロブスカイトナノ粒子の表面状態の制御によるブリンキングの抑制が重要になると考えられる。

用語説明

[用語1] 単一粒子分光計測 : 光の回折限界もしくはそれを超える空間分解能を有する顕微鏡を用いて、光の回折限界以下の大きさを有する粒子や分子の発光特性を計測する手法。従来の多数の粒子を対象とした発光測定とは異なり、集団平均の中に隠されていた個々の粒子の特性や科学現象を解明することが可能となっている。

[用語2] ペロブスカイト : 灰チタン石と同じ立方晶系の単位格子をもち、立方晶の各頂点に分子カチオンもしくは金属カチオン(A)が、体心に金属カチオン(B)が、そしてBを中心として、ハロゲンを中心とするアニオン(X)が立方晶の各面心に配置された結晶構造を持つ材料の名称である。ハライドペロブスカイト(ABX3)[ここで A=Cs+、CH3NH3+または CH2(NH2)2+、B=Pb 等、そしてX=Br、Cl、またはI]のナノ粒子の中には高い発光量子収率を示すものが存在する。

[用語3] ナノ粒子 : 通常数ナノメートルから百ナノメートル以下の径を有する粒子のことを指す。

[用語4] 発光ダイオード(LED) : 2つ電極の間にホール輸送機能、電子輸送機能、そして発光機能を有する薄膜が形成された発光デバイス。しきい値電圧以上でホールや電子が電極から注入され、発光体で再結合させることで発光体に励起状態を形成し、光としてエネルギーを取り出す。

[用語5] 電光変換効率 : LEDにおいて1つのホールと1つの電子が発光体で出会った際に何%の光が発光体から放出されるのかの確率の事を示す。

[用語6] ブリンキング : ナノサイズの発光体からの発光を観察していると褪色によって突然発光を失うまで一定の強度の光を発光し続ける。しかし、褪色以外にミリ秒から秒の時間間隔で明滅を繰り返す現象が存在しブリンキングと呼ばれている。

[用語7] 光励起時の発光(PL) : 外部からの光を発光体もしくは発光体近傍の材料に吸収させて、発光体に電子励起状態が形成されることにより、発光体から光が放出される現象のことを指す。

[用語8] 電界発光(EL) : 電圧印加をトリガーとして発光体に電子励起状態が形成されることにより、発光体から光が放出される現象。LEDとは異なり、電圧を印加しに電子のみを直接発光体に衝突させて電子励起状態を発光体内に形成させて発光させるのも電界発光である。この他にも電気化学的に電気励起状態を形成させて発光させる現象も電界発光に含まれる。

論文情報

掲載誌 :
Nature Communications
論文タイトル :
Single-particle electroluminescence of CsPbBr3 perovskite nanocrystals reveals particle-selective recombination and blinking as key efficiency factors
著者 :
Dharmendar Kumar Sharma, Shuzo Hirata, Martin Vacha
DOI :
<$mt:Include module="#G-07_物質理工学院モジュール" blog_id=69 $>

お問い合わせ先

東京工業大学 物質理工学院 材料系

Martin VACHA(マーティン・バッハ)

E-mail : vacha.m.aa@m.titech.ac.jp
Tel : 03-5734-2425 / Fax : 03-5734-2425

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

太陽光で働く新しい水分解光電極を開発 電気エネルギーなしで安定に駆動する光電極の実現に期待

$
0
0

要点

  • 太陽光照射下、酸フッ化物を光電極とした水の分解に成功。
  • 長時間の光照射に対しても安定に駆動。
  • 太陽光をエネルギー源に水から水素を製造、二酸化炭素還元への応用も。

概要

東京工業大学 理学院 化学系の前田和彦准教授、平山直樹大学院生らは、鉛とチタンからなる酸フッ化物[用語1]が太陽光照射下で水を分解する光電極[用語2]として機能することを発見した。

n型半導体[用語3]である酸フッ化物Pb2Ti2O5.4F1.2(鉛・チタン・酸素・フッ素)が小さなバンドギャップ[用語4]と水分解に有利な価電子帯/伝導帯構造を有していることから、光駆動型の水電解の可能性を検討して実現した。太陽光に含まれる可視光成分を吸収して、自身の分解などを伴うことなく安定に水を酸化して酸素を発生できるため、水分解水素製造だけでなく、二酸化炭素還元への応用も期待される。

これまで、可視光で水を安定的に酸化でき、かつ電気エネルギーの印加なしで駆動することができる光電極材料はほとんど知られていなかった。今回の前田准教授らの発見により、酸フッ化物群が電気エネルギーなしで安定に駆動する革新的光電極となる可能性が見えてきた。

研究成果は2019年10月5日、アメリカ化学会誌「Journal of the American Chemical Society」オンライン版に掲載された。

研究の背景

太陽光に多く含まれる可視光を利用して、水を水素と酸素に分解する光電極は、半世紀以上も前から国内外で精力的に研究されている(図1)。光電極に用いられるn型半導体には、1.可視光を吸収できる小さなバンドギャップ、2.水分解に際して追加で必要となる電気エネルギーを最小にする高い伝導帯ポテンシャル、3.水の酸化に対して安定な価電子帯構造―が求められるが、これらすべてを満たすn型半導体材料はほとんど知られていなかった。

前田准教授らはこれまでに、酸フッ化物Pb2Ti2O5.4F1.2が可視光応答可能な狭いバンドギャップと高い伝導帯ポテンシャルを有するn型半導体であり、安定な可視光応答型光触媒となることを見出していた[参考文献1] 。だが、Pb2Ti2O5.4F1.2の水中での反応活性の向上が課題となっていた。特に、この材料の高効率化には、光吸収によって生じた電子と正孔を効率良く水へと受け渡せる反応場の構築が必要となっていた。

可視光応答型光電極による水分解

図1. 可視光応答型光電極による水分解

研究成果

前田准教授らは透明導電性ガラス上に積層したPb2Ti2O5.4F1.2微粒子電極が、太陽光照射下で水を分解する安定な光電極となることを見出した(図2)。長時間の光照射に対しても光電極性能は低下することなく水から酸素を生成し続け、安定な価電子帯構造を有するn型半導体の有効性が明らかとなった。これは、酸フッ化物を光電極として用いて水を分解した世界初の例でもある。

またレーザー分光測定により、Pb2Ti2O5.4F1.2に生じた電子と正孔が長寿命を有していることもわかり、光エネルギー変換材料として本質的に優れていることも明らかとなった。

酸フッ化物Pb2Ti2O5.4F1.2を用いた太陽光照射下での光電気化学的水分解

図2. 酸フッ化物Pb2Ti2O5.4F1.2を用いた太陽光照射下での光電気化学的水分解

今後の展開

これまで、可視光で水を安定的に酸化でき、かつ電気エネルギーの印加なしで駆動しうるn型半導体光電極材料はほとんど知られていなかった。今回の前田准教授らの発見により、酸フッ化物群が電気エネルギーなしで安定に駆動する革新的光電極材料となる可能性が見えてきた。

今後、光電極構造や電解条件の最適化を行うことで、さらなる性能向上が見込まれる。またPb2Ti2O5.4F1.2は水分解水素製造だけでなく、二酸化炭素還元のための光電極部材としての応用も期待される。

付記

本研究は近畿大学の岡研吾講師、豊田工業大学の山方啓准教授のグループとの共同で行った。

本研究は、日本学術振興会 科学研究費補助金 新学術領域計画研究「複合アニオン化合物の新規化学物理機能の創出」(代表:前田和彦東京工業大学准教授)、新学術領域公募研究「Pb,Biを含む酸フッ化物における特異的な物性の開拓と起源の解明」(代表:岡研吾近畿大学講師)、「複合アニオン化合物の光励起ダイナミクス」(代表:山方啓豊田工業大学准教授)等の助成を受けて行った。

Pb2Ti2O5.4F1.2電極上での光水分解のデザインイラスト。掲載誌のグラフィカルアブストラクトに使用されている。

図3. Pb2Ti2O5.4F1.2電極上での光水分解のデザインイラスト。掲載誌のグラフィカルアブストラクトに使用されている。

用語説明

[用語1] 酸フッ化物 : 同一化合物内にアニオン種として酸素とフッ素を含む無機化合物。

[用語2] 光電極 : 半導体からなり、光エネルギーを吸収してキャリア(電子と正孔)を生み出すことのできる電極。同じ粒子上で酸化と還元が起こる光触媒に対して、光電極では酸化と還元の反応場を物理的に分離構築できるため、高効率な太陽光エネルギー変換に有利とされる。

[用語3] n型半導体 : 電荷を運ぶキャリアが電子である半導体。

[用語4] バンドギャップ : 半導体において電子で占有されたバンドを価電子帯、空のバンドを伝導帯といい、価電子帯と伝導帯の幅の大きさをバンドギャップという。電子は伝導帯の下端を、正孔は価電子帯の上端を動く。

参考文献

[1] Ryo Kuriki, Tom Ichibha, Kenta Hongo, Daling Lu, Ryo Maezono, Hiroshi Kageyama, Osamu Ishitani, Kengo Oka, Kazuhiko Maeda, J. Am. Chem. Soc., 2018, 140, 6648–6655.

論文情報

掲載誌 :
Journal of the American Chemical Society
論文タイトル :
Solar-Driven Photoelectrochemical Water Oxidation over an n-Type Lead-Titanium Oxyfluoride Anode
著者 :
Naoki Hirayama, Hiroko Nakata, Haruki Wakayama, Shunta Nishioka, Tomoki Kanazawa, Ryutaro Kamata, Yosuke Ebato, Kosaku Kato, Hiromu Kumagai, Akira Yamakata, Kengo Oka, Kazuhiko Maeda
DOI :
<$mt:Include module="#G-03_理学院モジュール" blog_id=69 $>

お問い合わせ先

東京工業大学 理学院 化学系

准教授 前田和彦

E-mail : maedak@chem.titech.ac.jp
Tel : 03-5734-2239 / Fax : 03-5734-2284

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661


ペロブスカイト太陽電池特性の再現性、安定性を向上 官能基の存在と強固な接合界面の形成に成功

$
0
0

要点

  • 酸素官能基を修飾したカーボンナノチューブ紙状電極(BP)を採用
  • 初期の太陽電池特性にばらつきがあっても放置するだけで発電効率が向上
  • BP電極との接合界面がペロブスカイト層の再構成で強固になり特性が安定化

概要

東京工業大学 物質理工学院 応用化学系の脇慶子准教授らはペロブスカイト太陽電池[用語1]の開発で、初期特性が安定しなくても常温常圧で放置するだけで電圧-電流特性が徐々に向上し、その構造が本来持つ最大効率に収束することを世界で初めて見出した。酸処理で-COOH、-OHなどの官能基[用語2]を修飾した多層カーボンナノチューブを紙状電極(BP)[用語3]として作製し、ホール輸送層(HTM)[用語4]/Au電極の代わりに用いて実現した。

発電効率の初期値3%のペロブスカイト太陽電池を常温常圧で77日間放置すると発電効率が11%に向上。同じ手法で作製しても再現性が得にくいのがペロブスカイト太陽電池の実用上の難点だが、その原因は不明だった。脇准教授らはBPへの官能基導入が再現性、安定性、発電特性向上の鍵であることを発見、簡便な手法で電池特性を大幅に向上した。

交流インピーダンス測定[用語5]や走査型電子顕微鏡による評価からヨウ化鉛(PbI2)あるいはペロブスカイト(MAPbI3)層と強い相互作用をする酸素官能基を多層カーボンナノチューブに導入すると、ペロブスカイト層への水分侵入が抑制され、ペロブスカイト層は常温でイオン拡散速度が大きいため、再構成して電極界面が強固になり、電荷移動抵抗が下がって光起電力、光電流[用語6]が共に増大、特性が向上したと結論づけた。

ペロブスカイト太陽電池の高効率・高耐久・低コスト化は電極との強固な接合界面形成が鍵で炭素材料がその役目を果たすことを示した。ペロブスカイト層の組成、膜厚の最適化で、これまでの発電効率を塗り替える可能性もある。

研究成果は9月24日発行のドイツWILEY(ワイリー)社の科学誌「Solar RRL」オンライン版に掲載された。

研究成果の概要

図. 研究成果の概要

研究成果

再現性が得られにくいが、簡便な作製プロセスである二段階湿式法を用い、HTMフリーペロブスカイト太陽電池を作製した(図1)。ぺロブスカイト材料はシンプルな組成を有するCH3NH3PbI3(ハロゲン化鉛ペロブスカイト)とし、電子はTiO2電極、ホールはHTM/Au電極の代わりにカーボンナノチューブ(CNT)紙状電極(buckypaper = BP)で集電した。

二段階湿式法によるペロブスカイト太陽電池の作製プロセス

図1. 二段階湿式法によるペロブスカイト太陽電池の作製プロセス

ペロブスカイト太陽電池は次世代の太陽電池として期待が高まる一方で、作り方が同じであっても初期の発電特性が一定せず、安定性も低いことが難点として知られている。脇准教授らは、CNTに導入した-COOH、-OHなどの酸素官能基が時間の経過とともにPbI2膜やMAPbI3膜と強い相互作用を有することを見出し、乾燥剤入りの試料ケースに保管して常温常圧で一定時間放置するだけで、その構造が本来持つ電流−電圧特性にまで次第に向上し収束することを発見した(図2)。

測定から、電池を暗所に放置するとMAPbI3/CNT界面抵抗のみならず、MAPbI3/TiO2界面の電子移動抵抗も大きく下がることがわかった。これらの結果は作製プロセスの精度が多少悪くても、酸素官能基が存在することで、ペロブスカイト結晶の再構成が常温常圧で起り、接合界面を強固に安定化することを示している。

官能基を導入したBP電極を用いたペロブスカイト太陽電池の発電効率(a)と電流-電圧特性の経時変化(b)
図2.
官能基を導入したBP電極を用いたペロブスカイト太陽電池の発電効率(a)と電流-電圧特性の経時変化(b)

これは酸素官能基がBP電極とペロブスカイト層との強い相互作用をもたらして界面の劣化を抑え、非常に大きいイオン拡散速度[用語7]を持つペロブスカイト結晶が常温で自己再構成して、さらに強い接合界面が形成すると結論づけた。放置後の試料を観察すると、ペロブスカイト結晶粒径が大きくなるだけではなく、セルから炭素電極の剥離が困難であった。

剥離後のペロブスカイト層/BP電極界面を観察したところ、通常の界面にはない強い接合が確認できた(図3)。官能基なしではペロブスカイト結晶粒径が大きくなるものの、界面は強固にならずに放置するほど劣化が進み、電池自体が黄色に変色する現象も確認された。このように強固な接合界面を多く作ることができれば、発電特性が向上し、劣化耐性と安定性が高い太陽電池を作製することが可能になる。

常温常圧で88日間保管後にBPをピンセットで削って剥離させた時の接合界面SEM像

図3. 常温常圧で88日間保管後にBPをピンセットで削って剥離させた時の接合界面SEM像

研究の背景

ペロブスカイト太陽電池は簡便な低温プロセスにより作製できる高効率の次世代太陽電池として期待されている。典型的な構造はCH3NH3PbI3:MAPbI3[用語8]の両側を、励起された電子を収集する電子伝導層 TiO2と透明電極のFTO、ホールを収集するホール伝導層(HTM)と金電極ではさむ構成になっている。実用化のためには、高効率化、大面積化、高耐久性化などの課題をクリアしなければならない。

一般に、光吸収層であるペロブスカイト材料だけではなく、ホールを収集するためのHTM/Au電極[用語9]も高湿度の環境下で劣化し、電池の安定性を下げることが知られている。現在、水分を排除する環境下で作製・封止されたセルにおいて、発電効率20%以上が複数の研究機関から報告されているが、再現性や安定性に課題があり実用に資する数値とは言い難い。

従来のHTM/Au電極に代わり、安定性向上とコスト低減への期待から、炭素材料を使用するHTMフリーのペロブスカイト太陽電池が近年注目されている。しかしながら、報告されている発電効率はHTM/Au電極を使用した場合よりも低く、ペロブスカイト層で光励起されたホールを速やかに引き出し、界面での電荷移動抵抗を下げることが課題となっている。同時に劣化の原因となる水分のペロブスカイト層への侵入を防ぐことが重要で、電極/ペロブスカイト層の界面をできる限り強固にすることが双方の向上につながると考えられる。

研究の経緯

東工大の脇研究室では、長年多層カーボンナノチューブ(BP)の欠陥制御の研究を行ってきた。ペロブスカイト太陽電池において、接合界面でのホール収集率を高めるためには、カルボキシル基(-COOH)やフェノール基(-OH)などの酸素官能基を導入した高い仕事関数を持つ電極の使用が有効であり、これらの官能基を導入したBPを電極に用いて太陽電池構造を作製すると、ペロブスカイト層を形成するための前駆体であるPbI2膜に容易に貼りつけることが可能であり、MAIに浸しても剥離せずにペロブスカイト層が形成されるのに対して、BPに官能基を導入しないと溶液中で電極が剥がれることがわかった。

これは-COOH、-OHなどの酸素官能基がPbI2膜やMAPbI3膜と強い相互作用をすることを示しており、H-I間の水素結合形成のためと推測される。一方で、MAPbI3はイオン拡散速度が極めて大きいため、安定性を低下させることも知られている。もし、強い相互作用を持つ界面の形成が可能な電極を用い、水分による劣化を抑えられるのであれば、高いイオン拡散速度を逆に利用して、電極との強固な接合界面形成や、水分をブロックした状態でMAPbI3膜の結晶性をより安定な構造に再構成することが可能と考えた。

本研究では、非常に簡便な二段階溶液法(図1)を用い、多数の初期特性がばらばらで不安定な電池を作製した。これらを乾燥剤入りの試料ケースに入れて常温常圧で長期間保管して、発電特性の経時変化を比較した。測定はRH(相対湿度)が20-50%、常温、大気下で行なった。

今後の展開

ペロブスカイト太陽電池の自己再構成メカニズムを利用して、今後は光吸収層であるペロブスカイト層の組成や厚さ、電極界面などを最適化することにより、実用化に資する高効率かつ高安定性の太陽電池を早期に作製する。

謝辞

本研究は国立研究開発法人科学技術振興機構低炭素社会戦略センター(LCS)の支援・協力を受けて行なわれた。

用語説明

[用語1] ペロブスカイト太陽電池 : ペロブスカイトと呼ばれる結晶材料を光吸収に用いた新しいタイプの太陽電池であり、塗布技術などの湿式法で容易に作製できるため、既存の太陽電池よりも低価格になると考えられている。

[用語2] -COOH、-OHなどの官能基 : 有機化合物を特性づける原子団を官能基といい、炭素は硝酸や硫酸などの酸化剤によって酸化処理された場合に炭素のエッジに酸素を含む官能基(-COOH、-OHなど)が形成される。

[用語3] 多層カーボンナノチューブの紙状電極(bukypaper:BP) : カーボンナノチューブの結合体による薄膜状の物質の総称。水などの溶液に分散したカーボンナノチューブをろ過して作製する。

[用語4] ホール輸送層(HTM) : hole transporting materialの略称。正孔を受け取る(電子を出す)仕事関数の大きい材料が必要で、高分子材料である「PEDOT:PSS」やspiro-OMeTADが高性能で広く使われている。しかし吸湿性があるため電池の劣化を引き起こす。

[用語5] 交流インピーダンス測定 : 直流電流では測定できない複数の界面抵抗を、周波数を変化させた交流電流によりそれらを分離して測定することができる。

[用語6] 光起電力・光電流 : 太陽電池に光を照射すると光吸収層に電子/正孔が生成し、正負の電荷が分離して電池の両端に収集されることによって、起電力が生じる。また、電気回路がつながれば光電流が流れる。

[用語7] イオン拡散速度 : ペロブスカイト太陽電池の代表的な材料であるMAPbI3は空孔を介してI-イオンのみならず、MA+イオンも容易に拡散できることが知られている。イオンがエネルギー障壁を超えることで隣の空孔に移動できるため、エネルギー障壁が低く、空孔欠陥が多いとイオンの拡散速度が大きい。

[用語8] CH3NH3PbI3:MAPbI3 : ペロブスカイト太陽電池において代表的なペロブスカイト材料であるメチルアンモニウムヨウ化鉛(CH3NH3PbI3)は通常MAPbI3と略される。

[用語9] HTM/Au電極 : ペロブスカイト太陽電池の典型的な構造はペロブスカイト材料の両側を、励起された電子を収集する電子伝導層 TiO2と透明電極のFTO、ホールを収集するホール伝導層(HTM)と金電極ではさむ構成になっており、通常HTM/Au電極と略される。

論文情報

掲載誌 :
Solar RRL
論文タイトル :
MAPbI3 Self‐Recrystallization Induced Performance Improvement for Oxygen‐Containing Functional Groups Decorated Carbon Nanotube‐Based Perovskite Solar Cells
著者 :
Jie Chen, Ti Chen, Tangliang Xu, Jia-Yaw Chang, and Keiko Waki*
DOI :
<$mt:Include module="#G-07_物質理工学院モジュール" blog_id=69 $>

お問い合わせ先

東京工業大学 物質理工学院 応用化学系
准教授 脇慶子

E-mail : waki.k.aa@m.titech.ac.jp
Tel : 045-924-5614 / Fax : 045-924-5217

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

「イノベーション・ジャパン2019」大学組織展示 出展報告

$
0
0

東京工業大学は、8月29日、30日に東京ビッグサイト(東京都江東区)で開催された「イノベーション・ジャパン2019~大学見本市&ビジネスマッチング~」の「大学組織展示」に出展しました。

「大学組織展示」は、大学と産業界との間での新たなパートナーシップの創造を目的に、国立研究開発法人 科学技術振興機構(JST)が主催した「イノベーション・ジャパン ―大学見本市―」のエリア内に開催されたものです。

自動走行ロボット実演(5G)
自動走行ロボット実演(5G)

今年度、本学ブースでは、「超スマート社会に貢献する5G・Robot・CPHS」をテーマに、工学院 電気電子系の阪口啓教授による「自動運転(5G)」、工学院 機械系の鈴森康一教授による「ヒトxロボx AI(Robot)」、工学院 システム制御系の藤田政之教授による「自律CPS(CPHS)」の3つの研究内容を紹介しました。

5G(第5世代移動通信システム)では自動走行ロボットによる実演、Robot(ロボット)では人工筋肉繊維による体験及び展示、CPHS(Cyber-Physical & Human Systemsの略)ではロボット群の運動の動画と、それぞれ違った方法で来場者に対し「超スマート社会」を提案しました。

サイバーフィジカルシステムにさらに人間(あるいは社会)を組み込み、その全体をシステムとして捉えたもの

人工筋肉繊維展示「がいこつくん」(Robot)
人工筋肉繊維展示「がいこつくん」(Robot)

自律CPS動画(CPHS)
自律CPS動画(CPHS)

超スマート社会実現に向けた研究力の例

超スマート社会実現に向けた研究力の例

当日は2日間で多くの来場者が本学ブースに参加し、本学の構想の意義を理解していただくことができました。

今後もモビリティ、生産分野、生活など、5Gの先を見据えた新しい産業・社会の実現に向けて邁進していきます。

<$mt:Include module="#G-05_工学院モジュール" blog_id=69 $>

お問い合わせ先

研究・産学連携本部 産学連携部門

E-mail : sangaku@sangaku.titech.ac.jp

フラストレート量子磁性体におけるハイブリッド励起を発見 譲り合う励起状態たち

$
0
0

発表のポイント

  • 量子無秩序状態から非共線磁気秩序状態への量子相転移を示すフラストレート量子磁性体の励起スペクトルを圧力下中性子非弾性散乱により観測した。
  • 量子臨界点近傍において、位相揺らぎと振幅揺らぎのハイブリッド励起の検証に初めて成功し、そのミクロな起源を明らかにした。
  • フラストレート量子磁性体において、圧力による熱流やスピン流の制御の可能性が示唆された。

発表概要

東京大学物性研究所の益田隆嗣准教授らのグループは、静岡大学、東京工業大学 理学院 物理学系の栗田伸之助教、田中秀数教授、高エネルギー加速器研究機構(KEK)、Oak Ridge National Laboratory (ORNL)と共同で、フラストレート量子磁性体[用語1]CsFeCl3量子臨界点[用語2]近傍で、位相揺らぎと振幅揺らぎの混成によるハイブリッド励起を観測し、その起源を解明しました。

物質の運動状態の研究は、電気抵抗、熱伝導、スピン流などデバイスの性能を左右する物性の基礎的理解に不可欠です。従来、運動状態については、位相揺らぎと振幅揺らぎがそれぞれ独立に研究されてきました。これらが混成した状態(ハイブリッド励起)は、熱電材料に関する現象報告のみで、磁性体や超伝導体などの系では、実験的検証はなされておらず、研究が遅れていました。位相揺らぎのみをもつ励起状態と振幅揺らぎのみをもつ励起状態が存在するとき、それらは中性子スペクトル[用語3]において観測されますが、その励起状態たちは交差します。しかし、両方を含む二つの励起状態がある場合、見知らぬものと仲間との両方が含まれていることを察知した励起状態たちは互いに譲りあって、よけ合うようになります。本研究では、圧力下での中性子散乱実験[用語4]により、互いがよけ合うような中性子スペクトル、すなわちハイブリッド励起を観測しました。さらに、フラストレート量子磁性体に特有な非共線磁気秩序[用語5]が位相と振幅を強くハイブリッドさせることで、一つの励起に二つの揺らぎが内包していることを理論的に示しました。これにより、圧力により運動状態がどのように変化するかを正確に説明することができました。

量子臨界点近傍におけるハイブリッド励起は磁性体のみならず、電荷密度波系、スピン密度波系、冷却原子系など自発的対称性が破れた系[用語6]一般に存在しうるものであり、今後さまざまな系での検証が期待されます。また、運動状態の圧力変化から、量子臨界点をまたぐことでスピン熱伝導が大きくなることやスピン波の速さが大きくなることが予想されました。このことは、圧力による熱流やスピン流の制御の可能性を示唆します。

発表内容

1. 研究の背景

私たちの生活を豊かにするエレクトロニクスデバイスでは、電気抵抗、熱伝導、スピン流などさまざまな物性が利用されていますが、それらの理解には物質の運動状態を明らかにすることが重要です。自然界はエネルギーの低い状態を好む傾向がありますので、その最安定状態からの揺らぎを考えることが物質の運動状態を考えることの基本となります。そして、物質のエネルギーを状態がもつ秩序を表すマクロな変数(秩序変数と呼ばれる)の関数として表すことにより、物質の運動や状態変化を考えることができます。強磁性状態、超伝導状態、強誘電状態など、何らかの秩序が存在する系は、一般に自発的対称性が破れています。秩序変数が複素数で表される場合には、秩序状態でのエネルギーは図1のようなワインボトルの底のような形をしています。ここで動径方向は秩序変数の振幅(大きさ)を、円周方向は位相を表しています。位相揺らぎによる運動状態は、自発的対称性が破れた系では必ず存在することが知られています。振幅揺らぎの方は、2012年に素粒子物理学分野でヒッグス粒子が発見されて以降、物質中のヒッグス粒子的運動状態として注目を浴び、超伝導体、磁性体などにおいてヒッグスモード(振幅モード)の実験的な検証が精力的になされてきました。このように位相揺らぎと振幅揺らぎは独立に考えることが普通に行われてきましたが、これらが混成した状態は、熱電材料における光学・音響フォノンの混成に関する現象論的報告のみで、磁性体、超伝導体をはじめとする数々の系における研究は遅れていました。

自発的対称性の破れた系のエネルギー

図1. 自発的対称性の破れた系のエネルギー

磁性体においては、明瞭な振幅モード出現の条件として、(i)3次元的な系であること、が必要とされており、振幅モードと位相モードの混成の条件として、(ii)非共線磁気秩序を有すること、が必要とされます。さらに、その混成の効果が顕著となり検証可能となる条件として、(iii)系が量子臨界点近傍にあること、が必要となります。三角格子をもつフラストレート量子磁性体CsFeCl3は条件(i)を満たすことが古くより知られていました。さらに最近の研究から、図2に示されるように圧力印加により量子無秩序状態から非共線磁気秩序状態への量子相転移が存在することが報告され、条件(ii)、(iii)も満たすことが分かりました。このことから、CsFeCl3は位相揺らぎと振幅揺らぎの混成したハイブリッド励起モードの実験的検証の最適なモデル物質と考えられます。

CsFeCl3の状態の圧力依存性

図2. CsFeCl3の状態の圧力依存性


量子無秩序状態から非共線磁気秩序状態へ、0.9ギガパスカル付近で相転移する(量子臨界点)。この近傍で位相モードと振幅モードは強く混成すると予測、検証を行った。

2. 研究内容

物質の磁気は磁性原子のもつ電子のスピン[用語7]が担っています。このスピンの運動状態は、中性子散乱実験により調べることができます。そこで本研究グループは、大強度陽子加速器施設(J-PARC)の物質・生命科学実験施設(MLF)に設置された高分解能チョッパー分光器HRC(図3A-Cカラープロット)とオークリッジ国立研究所の研究用原子炉に設置された三軸分光器CTAX(図3A-C黄色/赤色シンボル)を併用して、CsFeCl3の中性子スペクトルをさまざまな圧力下で測定しました。臨界圧力以下の量子無秩序状態においては、波数が1/3や2/3において極小となるようなエネルギーギャップを有するスペクトルが観測されました(図3A、B)。これらの波数ではスペクトルの傾きが0となっており、このことは、スピン熱伝導やスピン波速度が強く抑制されていることを示唆します。一方臨界圧力以上の非共線秩序状態においては、波数1/3や2/3においてエネルギーギャップが消失するようなスペクトルが観測されました(図3C)。スペクトルの傾きが有限となっており、このことは、スピン熱伝導やスピン流が大きくなっていることを示唆します。さらに、0.5 – 0.8 meVと0.8 – 1.3 meVの領域に特徴的なスペクトルが観測されました。これらのスペクトルを検証するため、拡張スピン波理論とよばれる手法を用いて再現を試みました。非共線秩序の特徴を正しく考慮した場合は、位相モードと振幅モードが混成し、その効果は低エネルギーにある2つのスペクトル曲線と高エネルギー側にある2つのスペクトル曲線の反発として観測されました(図3D)。これは、仲間と見知らぬものが共存する励起状態は互いに譲り合いよけ合ったためです。意図的に混成効果を無視した場合は、2つのモードは譲り合うことなく交わり、実験結果を再現しませんでした(図3E)。

(A)-(C) さまざまな圧力下で測定されたCsFeCl3の中性子スペクトル。大気圧下(A)と0.3ギガパスカル(B)では1本のスペクトルが観測されたが、量子臨界点近傍の1.4ギガパスカル(C)では複数の特徴的なスペクトルが観測された。(D)、(E) 中性子スペクトルの計算結果。位相モードと振幅モードの混成を考慮した計算(D)は実験(C)を再現するが、考慮しない計算(E)は実験(C)を再現しない。
図3.
(A)-(C) さまざまな圧力下で測定されたCsFeCl3の中性子スペクトル。大気圧下(A)と0.3ギガパスカル(B)では1本のスペクトルが観測されたが、量子臨界点近傍の1.4ギガパスカル(C)では複数の特徴的なスペクトルが観測された。(D)、(E) 中性子スペクトルの計算結果。位相モードと振幅モードの混成を考慮した計算(D)は実験(C)を再現するが、考慮しない計算(E)は実験(C)を再現しない。

非共線秩序においてはモード混成、すなわち励起状態の譲り合いは自然に生じます。臨界点近傍でモードは強く混成し、臨界圧力を通じて磁気励起が連続的に変化することを保証しています。このように、中性子散乱実験と理論計算を組み合わせることにより、スペクトル形状の圧力変化を正確に説明することができ、磁性体における位相モードと振幅モードの混成したハイブリッド励起モードが実証されました。また、臨界圧力以下で抑制されていたスピン熱伝導やスピン波速度が、臨界圧力以上で大きくなることが期待されます。

3. 社会的意義・今後の予定

ハイブリッド励起は磁性体のみならず、電荷密度波系、スピン密度波系、冷却原子系など自発的対称性が破れた系一般に存在しうるものであり、今後さまざまな系での検証が期待されます。また、混成現象は量子臨界点近傍で顕著となることが予想されていますが、これは広範囲な圧力実験を行うことにより検証可能です。スペクトル形状の圧力変化から、圧力による熱流やスピン流の制御の可能性が示されました。このことは、熱流やスピン流のスイッチデバイスとなることを示唆します。さらにスペクトルの詳細形状を解析することにより、混成効果が励起の寿命に与える影響についても検証可能です。本研究により物質の運動状態の研究に関する指針が提示されました。

本研究成果は、物性研究所とKEKがJ-PARCで運営する最新型チョッパー分光器と、物性研究所が日米協力事業によりORNLと共同運営する研究用原子炉の従来型三軸分光器の相補利用により創出されました。2021年2月に日本の研究用原子炉JRR-3が再稼働予定となっていますが、本研究のようなこれらの相補的利用が中性子散乱実験で非常に効果的であることも示されました。

用語説明

[用語1] フラストレート量子磁性体 : 幾何学的配置や逆の効果をもつ相互作用の競合によって、スピン間に働く全ての相互作用エネルギーを最低にすることができない状況にある磁性体をフラストレート磁性体という。たとえば図4のように、三角形の頂点上に反平行にスピンを並べようとすると、全てのスピンが互いに反平行になる配置はない。自然界はエネルギー最低の状態を好むが、それが阻害されるため自然はフラストレーションを感じることになる。一般に、フラストレート磁性体では最安定な状態が複数存在するが、最低温では一つの状態が選ばれる。このとき思いもよらぬ状態が選ばれることがあり、これは、フラストレーションをため込んだ人間が思いもよらぬ行動をとることと似ている。人間界ではそれはしばしば不幸な事件となるが、自然界では新しい現象の発見につながる場合がある。フラストレート磁性体の中で量子性(状態の揺らぎやすさ)の強いものがフラストレート量子磁性体と呼ばれている。

三角形の頂点状にスピンを反平行に並べようとした図。頂点1と2のスピンを反平行に並べた。頂点3のスピンをどのように並べても、1、2、3すべてのスピンを反平行に並べることはできない。
図4.
三角形の頂点状にスピンを反平行に並べようとした図。頂点1と2のスピンを反平行に並べた。頂点3のスピンをどのように並べても、1、2、3すべてのスピンを反平行に並べることはできない。

[用語2] 量子臨界点 : 絶対零度における最安定状態は、圧力や磁場などを加えることにより劇的に変化する場合があり、これは量子相転移とよばれている。秩序変数の変化が連続的である場合、状態変化が起こる圧力や磁場は量子臨界点とよばれている。量子臨界点近傍では大きな量子揺らぎによって新奇な量子現象が出現することが多く、多くの関心を集めている。

[用語3] 中性子スペクトル : 中性子散乱実験により得られた4次元空間(エネルギー+3次元波数空間)上のデータのこと。生データは時間+3次元波数空間となっているが、スペクトル表示する際には時間をエネルギーに変換している。中性子スペクトルを解析することにより、物質中のスピンのミクロな運動を調べることができる。

[用語4] 中性子散乱実験 : 中性子の持つスピンを利用して、物質の磁気状態を探査する実験方法のこと。物性研究所附属中性子科学研究施設では、(1)J-PARC MLFにおける高エネルギーチョッパー分光器、(2)米国Oak Ridge国立研(ORNL)の研究用原子炉HFIRにおける冷中性子三軸分光器CTAX、(3)日本原子力研究開発機構の研究用原子炉JRR-3における数多くの中性子分光器群を所有し、全国共同利用に提供している。東日本大震災以降JRR-3は停止しているが、2021年2月に再稼働が予定されており、物性研究への中性子利用の再開が期待されている。

[用語5] 非共線磁気秩序 : 単純な構造の磁性体では、スピンが平行や反平行に並んだ“共線磁気秩序”が出現するが(図5A参照)、フラストレート磁性体では隣接するスピンのなす角度が平行からずれた“非共線磁気秩序”が出現する場合がある(図5B参照)。ハイブリッド励起の起源となるほか、マルチフェロイクスの起源となることも知られており興味が持たれている。

(A)共線磁気秩序の例 (B)非共線磁気秩序の例

図5. (A)共線磁気秩序の例 (B)非共線磁気秩序の例

[用語6] 自発的対称性の破れた系 : 気体状態の分子は熱運動により複雑な動きをしているが、時間平均をとると空間のどの場所にも均一に存在していることになる。これは、いわば対称性の良い状態といえる。温度を下げて固体となると分子は規則的にならび秩序的な状態となるが、空間的に分子のある場所とない場所が存在することになる。これは対称性の低い状態といえる。一般に自然界では温度を下げると自発的に対称性が破れて秩序状態が出現することが知られている。結晶、磁石、超伝導体、誘電体などは自発的対称性の破れた系である。

[用語7] スピン : 物質の磁性の起源となる物理量のことであり、直観的にはミクロな磁石と考えてよい。模式的には矢印で書き表される。回転運動と密接な関連があるためスピンという用語が用いられている。電子や陽子、中性子などの素粒子はいずれもスピンを有している。物質中の電子が有するスピンが物質の磁性を支配している。

論文情報

掲載誌 :
Science Advances
論文タイトル :
Novel Excitations near Quantum Criticality in Geometrically Frustrated Antiferromagnet CsFeCl3
著者 :
Shohei Hayashida、 Masashige Matsumoto、 Masato Hagihala、 Nobuyuki Kurita、 HidekazuTanaka、 Shinichi Itoh、 Tao Hong、 Minoru Soda、 Yoshiya Uwatoko、 and Takatsugu Masuda*
DOI :

発表者

  • 林田翔平 (研究当時:東京大学物性研究所 附属中性子科学研究施設 博士課程3年、現所属:スイス連邦工科大学 チューリッヒ校研究員)
  • 松本正茂 (静岡大学 理学領域 教授)
  • 萩原雅人 (研究当時:東京大学物性研究所 附属中性子科学研究施設 博士研究員、現所属:高エネルギー加速器研究機構 物質構造科学研究所 特別助教、J-PARCセンター 物質・生命科学ディビジョン 中性子利用セクション)
  • 栗田伸之 (東京工業大学 理学院 物理学系 助教)
  • 田中秀数 (東京工業大学 理学院 物理学系 教授)
  • 伊藤晋一 (高エネルギー加速器研究機構 物質構造科学研究所 教授、J-PARCセンター 物質・生命科学ディビジョン 中性子利用セクション)
  • Tao Hong (米国オークリッジ国立研究所 研究員)
  • 左右田稔 (研究当時:東京大学物性研究所 附属中性子科学研究施設 助教、現所属:理化学研究所 研究員)
  • 上床美也 (東京大学物性研究所 附属物質設計評価施設 教授)
  • 益田隆嗣 (東京大学物性研究所 附属中性子科学研究施設 准教授)
<$mt:Include module="#G-03_理学院モジュール" blog_id=69 $>

お問い合わせ先

東京大学物性研究所 附属中性子科学研究施設

准教授 益田隆嗣

E-mail : masuda@issp.u-tokyo.ac.jp
Tel : 04-7136-3415

静岡大学 理学領域

教授 松本正茂

E-mail : matsumoto.masashige@shizuoka.ac.jp
Tel : 054-238-6352

東京工業大学 理学院 物理学系

助教 栗田伸之

E-mail : kurita.n.aa@m.titech.ac.jp
Tel : 03-5734-2367

東京工業大学 理学院 物理学系

教授 田中秀数

E-mail : tanaka@lee.phys.titech.ac.jp
Tel : 03-5734-3541

取材申し込み先

東京大学物性研究所 広報室

E-mail : press@issp.u-tokyo.ac.jp
Tel : 04-7136-3207

静岡大学 広報室

E-mail : koho_all@adb.shizuoka.ac.jp
Tel : 054-238-5179

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

高エネルギー加速器研究機構 広報室

E-mail : press@kek.jp
Tel : 029-879-6047

J-PARCセンター 広報セクション

E-mail : web-staff@j-parc.jp
Tel : 029-284-4578

軽量で安全な水素キャリア材料を開発 室温・大気圧において光照射のみで水素を放出

$
0
0

要点

  • ホウ化水素シートが常温・常圧条件で光照射のみで水素を放出
  • 水素放出のメカニズムを計算科学による電子構造から解明
  • 安全・軽量なポータブル水素キャリアとしての応用に期待

概要

東京工業大学 物質理工学院 材料系の河村玲哉修士課程2年、宮内雅浩教授、筑波大学の近藤剛弘准教授、Nguyen Thanh Cuong(ニュエン タン クオン)研究員、岡田晋教授、高知工科大学の藤田武志教授、東京大学物性研究所の松田巌准教授らの共同研究グループは、ホウ素と水素の組成比が1:1のホウ化水素シートが室温・大気圧下において光照射のみで水素を放出できることを見出した。

ホウ化水素シートはもともとボロファン[用語1]という通称名で理論的に存在が予測されていた二次元物質で、2017年9月に本研究グループが初めて合成に成功した。ホウ化水素シートは軽元素のホウ素と水素からなり、その質量水素密度は8%以上と極めて高く、爆発のリスクある水素ガスボンベに代わる軽量で安全な水素キャリア[用語2]としての応用が期待されていた。

今回、見出した現象はホウ化水素シートに紫外光を照射する単純な操作で、室温・大気圧という穏やかな条件で水素を取り出すことができる。これを応用することで爆発性のある水素の運搬を、高温や高圧を要する従来手法よりもはるかに安全に達成することが期待できる。さらに本研究では、計算科学によって電子構造の観点から、光照射による水素放出のメカニズムを解明することに成功した。

研究成果は10月25日「Nature Communications」に掲載された。

光照射によってホウ化水素シートから水素が放出される様子を示す模式図

図1. 光照射によってホウ化水素シートから水素が放出される様子を示す模式図

研究の背景

原子一層や数層分の厚さからなる物質は二次元物質と呼ばれており、グラフェン[用語3]を始めとする多くの二次元材料で、通常の物質とは異なる性質に着目したさまざまな基礎的・応用的研究がなされている。こうした状況で、ホウ素のみで構成される二次元物質であるボロフェンと呼ばれる物質が、理論的な研究によってグラフェンの性能を凌駕することを示唆する報告がなされてきた。だが、合成に成功した条件はいずれも高温・超高真空下など特殊な条件が必要だった。

そのような中で、本研究グループは二次元的な骨格をもつホウ素に水素が結合した二次元物質であるホウ化水素シートの合成に、室温・大気圧下という非常に穏やかな条件で成功した(東工大プレスリリース 2017年9月26日)。ホウ化水素シートは軽元素のホウ素と水素からなるために、その質量水素密度は8.5%と高く、爆発のリスクある高圧水素ガスボンベに代わる軽量で安全な水素キャリア材料としての応用が期待されていた。

研究成果

本研究グループの第一原理計算[用語4]によると、ホウ化水素シートではホウ素の結合性軌道[用語5]から反結合性軌道[用語5]への遷移(α→β)、ならびに水素の反結合性軌道への遷移(α→γ)が起こることが示唆された(図2)。特に水素の反結合性軌道への遷移は紫外線のエネルギーに相当する。すなわち、光エネルギーでγ軌道に電子を遷移できれば水素の結合を弱められ、常温・常圧で紫外線の照射のみで水素が放出されるのではないかとの仮説を立てた。

ホウ化水素シートの透過型電子顕微鏡写真(a)、結晶構造(b)、電子構造(c)

図2. ホウ化水素シートの透過型電子顕微鏡写真(a)、結晶構造(b)、電子構造(c)

これを検証するため、2種類の光源を用いてホウ化水素シートから放出されるガスの分析をおこなった。可視光の照射はホウ素の結合性軌道から反結合性軌道への遷移(α→β)を起こすことができる一方、紫外線照射は水素の反結合性軌道への遷移(α→γ)を起こすことができる。この結果、第一原理計算の予想通り、紫外線の照射で水素が生成することが確認できた(図3(a))。また、紫外線を照射したときの水素生成量を定量したところ、ホウ化水素シートの質量の8%にあたる水素を放出できることがわかった(図3(b))。

従来の水素吸蔵合金における質量水素密度は、高いものでも2%程度だった。また、シクロメチルヘキサンのような有機ハイドライドも有望な水素キャリアとして知られているが、その質量水素密度は6.2%で、水素放出には300 ℃以上の加熱が必要だった。今回、宮内教授らが報告するホウ化水素シートは、既往の水素キャリアと比べて極めて大量の水素を、光照射という極めて簡便な操作で放出できることがわかった。

(a)ホウ化水素シートからの水素放出特性(照射光の波長依存性。filterと記載されている領域は波長490 nm以下の光をカットするフィルターを挿入)(b)紫外線照射時の水素生成能力
図3.
(a)ホウ化水素シートからの水素放出特性(照射光の波長依存性。filterと記載されている領域は波長490 nm以下の光をカットするフィルターを挿入)(b)紫外線照射時の水素生成能力

今後の展開

現行の車載用燃料電池には高圧水素タンクが搭載されているが、本研究成果により、安全・軽量・簡便なポータブル水素キャリアとしての応用が期待できる。

用語説明

[用語1] ボロファン : ホウ化水素シート。ホウ素と水素の組成比が1:1のナノシート状物質。

[用語2] 水素キャリア : 水素を貯蔵・輸送するための担体。高圧水素ガスボンベ、液化水素、アンモニア、有機ハイドライド、水素吸蔵合金などが知られる。

[用語3] グラフェン : 炭素原子一層あるいは数層分の厚さからなるシート状物質。

[用語4] 第一原理計算 : 実験データや経験パラメーターを使わない基本的な原理に基づく計算。

[用語5] 結合性軌道および反結合性軌道 : 分子同士を結合させるために働く軌道、および、分子同士の結合を開裂させるように働く軌道。

論文情報

掲載誌 :
Nature Communications
論文タイトル :
Photoinduced hydrogen release from hydrogen boride sheets
著者 :
Reiya Kawamura, Nguyen Thanh Cuong, Takeshi Fujita, Ryota Ishibiki, Toru Hirabayashi, Akira Yamaguchi, Iwao Matsuda, Susumu Okada, Takahiro Kondo, Masahiro Miyauchi
DOI :
<$mt:Include module="#G-07_物質理工学院モジュール" blog_id=69 $>

お問い合わせ先

東京工業大学 物質理工学院 材料系

教授 宮内雅浩

E-mail : mmiyauchi@ceram.titech.ac.jp
Tel : 03-5734-2527 / Fax : 03-5734-3368

筑波大学 数理物質系

准教授 近藤剛弘

E-mail : takahiro@ims.tsukuba.ac.jp
Tel : 029-853-5934

高知工科大学 環境理工学群

教授 藤田武志

E-mail : fujita.takeshi@kochi-tech.ac.jp
Tel : 0887-53-1050 / Fax : 0887-57-2520

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

筑波大学 広報室

E-mail : kohositu@un.tsukuba.ac.jp
Tel : 029-853-2040 / Fax : 029-853-2014

高知工科大学 広報課

E-mail : kouhou@ml.kochi-tech.ac.jp
Tel : 0887-53-1080 / Fax : 0887-57-2000

東京大学物性研究所 広報室

E-mail : press@issp.u-tokyo.ac.jp
Tel : 04-7136-3207

火星の水はミネラル豊富な塩味だった 太古の火星が生命生存に適した星だったことを 水の水質復元から立証!

$
0
0

金沢大学環日本海域環境研究センターの福士圭介准教授、大学院自然科学研究科 博士前期課程1年の森田康暉さん、東京工業大学 地球生命研究所の関根康人教授(金沢大学環日本海域環境研究センター客員教授)、米国・ハーバード大学のRobin Wordsworth(ロビン・ワーズワース)准教授、物質・材料研究機構の佐久間博主幹研究員らの共同研究グループは、太古の火星に存在した水の水質復元に世界で初めて成功し、塩分やpHといった火星の水質が生命の誕生と生存に適したものであることを明らかにしました。

これまでの欧米による周回衛星や探査車の調査から、火星表面には河川跡などの流水地形や、水の作用で生成する鉱物が存在することが確認されており、約40~35億年前の太古の火星には液体の水があったことが確実視されています。しかし、生命の存否にとって重要となる、当時の水の塩分やpHなどの水質は分かっていませんでした。

本研究では、アメリカ航空宇宙局(NASA)の火星探査車キュリオシティ[用語1]が探査を行っているゲール・クレータ内部に存在した巨大湖に着目し、その湖底にたまった堆積物の探査データを、地球の放射性廃棄物処理分野で開発された手法で独自に解析しました。その結果、かつて火星に存在した水の水質が、地球海水の1/3程度の塩分で、pHは中性であり、ミネラルやエネルギーも豊富に含むことが分かり、生命の生存に適したものであることを明らかにしました。また、そのような塩分を達成するためには、100万年程度の期間、塩分やミネラルが河川を通じて湖に運ばれ、濃縮されることが必要であるということも分かりました。このような溶存物質の濃縮が起きる場は、生命の誕生にとっても必須と考えられています。

これらの知見は、“かつて水が存在した惑星”という火星の従来の描像を“生命の誕生と生存に適した惑星”へと塗り替える進展であり、その水質復元法は、近い将来、わが国の小惑星探査機「はやぶさ2」の帰還試料の分析にも応用されるものです。

本研究成果は、2019年10月25日10時(英国時間)に英国科学誌『Nature Communications』に掲載されました。

研究の背景

周回衛星や探査車による火星探査から、約40~35億年前の太古の火星には広範囲にわたり液体の水が存在した証拠が見つかり、過去の火星における生命存在の可能性が現実味を帯びて議論されるようになってきました。しかし、生命の存在可能性を検証するには、単なる水の存否だけでなく、水の水質(pH、塩分、溶存種濃度)や周囲の環境を明らかにする必要があります。現在、約35億年前に巨大湖が内部に存在していたゲール・クレータに、NASAの火星探査車キュリオシティが降り立ち、当時湖底に堆積した泥の堆積物に対して探査を行っています(図1)。キュリオシティは、堆積物中に水の作用で生成した鉱物や有機物などを見つけていますが、すでに失われた水の水質を復元することはできていませんでした。

図1。火星探査車キュリオシティ ゲール・クレータにかつて存在した水環境を調査している(画像提供 NASA)

図1. 火星探査車キュリオシティ
ゲール・クレータにかつて存在した水環境を調査している(画像提供 NASA)。

研究成果の概要

本研究では、放射性廃棄物の地層処分研究分野で開発された水質復元手法(図2)を応用し、キュリオシティが得たゲール・クレータの堆積物データから、太古の火星に存在した失われた水の水質を独自に復元することに世界で初めて成功しました(表1)。

放射性廃棄物の地層処分分野で開発されたスメクタイトの層間組成を利用した水質復元法

図2. 放射性廃棄物の地層処分分野で開発されたスメクタイトの層間組成を利用した水質復元法


層状構造を有する粘土鉱物スメクタイトは層間に陽イオン(Na+、K+、Mg2+、Ca2+)を保持する性質を持つ。層間に保持される陽イオン組成は接触する水に含まれる陽イオン組成に応じて決定される(イオン交換平衡)。接触する水が消失した後でもスメクタイト層間には陽イオンが保持されるため、残された層間の陽イオン組成から、かつてスメクタイトが接触していた水の陽イオン組成に関する情報を得ることができる。さらに水の作用で生成した鉱物(塩など)がスメクタイトと共存している場合、それら塩と水との間の化学反応(溶解・沈殿反応)を考慮することで、陰イオン(Cl-、SO42-、HCO3-)組成やpHを復元することができる。

表1. 本研究により復元されたゲール・クレータ湖沼堆積物間隙水の水質の結果


地球上の淡水湖(琵琶湖)や海水と同様にpHは生命にとって好適な条件である中性を示し、ミネラルを豊富に含む。

項目
単位
琵琶湖
海水
ゲール
pH
ピーエイチ
(-)
7.0±0.2
8.1±0.4
6.9 - 7.3
Na+
ナトリウム
(mmol/kg)
0.32
490
94 - 120
K+
カリウム
(mmol/kg)
0.04
11
1.4 - 4.4
Mg2+
マグネシウム
(mmol/kg)
0.09
55
35 - 60
Ca2+
カルシウム
(mmol/kg)
0.30
11
24 - 45
Cl-
塩化物イオン
(mmol/kg)
0.25
570
110 - 250
SO42-
硫酸イオン
(mmol/kg)
0.080
29
44 - 72
HCO3-
重炭酸イオン
(mmol/kg)
0.71
2.4
2.3 - 16

復元された水質は、pHが中性で、主な溶存成分は地球の海と同じナトリウムと塩素であり、これ以外にもマグネシウムやカルシウムなどのミネラルも多く含みます。また、塩分は地球海水の1/3程度であり、生命が利用できるエネルギー(酸化還元非平衡[用語2])も存在していたことが明らかになりました。復元された水質は、強酸や強アルカリ、高塩分といった生命を害するものではなく、生命の生存に極めて好適なものといえます。

このような湖の水質は、どうやって実現したのでしょうか。表面に残された地形から、ゲール・クレータ湖には、水が流入する河川はあるものの、流出する河川が無い湖だったことが分かっています。湖には、流入する河川などに溶けたわずかな塩分やミネラルが、水と共に供給されます。一方、流出河川の無いゲール・クレータ湖では、湖面から水が蒸発することによって、水の収支バランスが取れています。しかし、蒸発は水のみを失わせるため、供給された塩分やミネラルは湖に残され、長い期間をかけて濃縮されることになります。本研究では、地球の河川に含まれる典型的な塩分と気候モデルから導かれるゲール・クレータ湖からの蒸発率を使い、ゲール・クレータ湖の塩分が実現するために必要な塩分の濃縮期間を求めました。その結果、復元された塩分になるためには、初期火星に100万年程度の温暖期が生じ、その期間にわたって湖に塩分が運ばれ、濃縮される必要があることが分かりました。このような溶存物質が比較的長期にわたって濃縮される場は、有機物の重合・高分子化にも有利なため、地球生命誕生の場の候補とも考えられています。このように、本研究グループはゲール・クレータ巨大湖が、生命の生存のみならず、その誕生にとっても適した場であることを示しました。

今後の展開

40年にわたる探査の結果、人類は火星に対して“かつて水が存在した惑星”という描像を持つに至りました。しかし、水の水質や環境が不明なため、火星における生命に関する議論はどうしても推測の範疇を出ませんでした。本研究は、かつての火星の水質や環境を初めて定量的に明らかにしたものであり、人類が火星に対して抱く描像を“生命の誕生や生存に適した惑星”に塗り替えうる進展といえます。今後はキュリオシティのみならず、マーズ2020[用語3]エクソマーズ[用語4]といった火星探査計画でも、本研究に基づく水質や環境の復元が可能となります。これにより、火星では生命に適した環境が広範囲に広がっていたのか、その環境はいつどのようにして終わったのかに迫ることができます。さらには、火星サンプルリターン計画[用語5]において、生命の痕跡が最も期待される試料を地球に持ち帰ることにもつながります。

本研究では、わが国の研究者が独自の視点で放射性廃棄物処理分野の手法を応用し、NASA探査チームでも成し得なかった水質の復元を行えた点は特筆すべきです。本研究で用いた水質復元法をわが国の小惑星探査「はやぶさ2」が採取に成功した、小惑星リュウグウの帰還試料に適用することで、太陽系初期に存在した微惑星[用語6]における水質や環境の推定も可能になります。

本研究は、文部科学省科学研究費補助金新学術領域研究(研究領域提案型)「水惑星学の創成」(領域代表者:関根康人)、金沢大学環日本海域環境研究センター共同研究の支援を受けて実施されました。

用語説明

[用語1] 火星探査車キュリオシティ : NASAによる火星探査ミッションであるマーズ・サイエンス・ラボラトリにおける探査車。キュリオシティはその探査車の愛称である。2012年から現在も、火星ゲール・クレータ内の湖底堆積物の探査を行っている。高性能カメラや温度・湿度・速度計などの環境計測装置に加え、火星の土壌や堆積物の化学組成や鉱物組成、有機物を分析するための装置を搭載している。

[用語2] 酸化還元非平衡 : 酸化的な環境と還元的な環境が混じり合っている状態。ゲール・クレータ内の堆積物には高い酸化条件のみで生成する物質であるアカガネアイトと還元的条件のみで生成する鉄サポナイトが混じり合って存在している。

[用語3] マーズ2020 : NASAによるマーズ・サイエンス・ラボラトリの後継探査ミッション。2020年7月に打ち上げ予定であり、かつて水が流れた痕跡のある火星上のジェゼロ・クレータに2021年2月に着陸予定。火星の堆積物の化学組成を分析する観測機器などを搭載するほか、火星サンプルリターン計画におけるサンプル捕集も行う。

[用語4] エクソマーズ : 欧州宇宙機構(ESA)による火星探査計画。第1段は2016年に打ち上げられた周回機(トレース・ガス・オービタ)であり、第2段が2020年に打ち上げされ、2021年に着陸予定の探査車。探査車には、火星の堆積物中の鉱物や有機物を分析する装置を搭載する。

[用語5] 火星サンプルリターン計画 : NASAとESAが共同で行う火星表層サンプルを地球に持ち帰る計画。マーズ2020がサンプル捕集を行い、2026年以降に打ち上げ予定の着陸機などによってサンプルを火星軌道に打ち上げて回収する。2030年代初頭の地球へのサンプルリターンを目指している。

[用語6] 微惑星 : 太陽系初期に存在していたと考えられる惑星の材料物質となった微小天体。リュウグウをはじめとする現在太陽系に存在する小惑星の多くは、微惑星が高速で衝突・破壊した結果、形成したと考えられる。

論文情報

掲載誌 :
Nature Communications
論文タイトル :
Semiarid climate and hyposaline lake on early Mars inferred from reconstructed water chemistry at Gale(火星ゲール・クレータ湖沼堆積物間隙水の水質復元:初期火星は半乾燥気候であり低塩分の塩湖が存在していた)
著者 :
Keisuke Fukushi, Yasuhito Sekine, Hiroshi Sakuma, Koki Morida, Robin Wordsworth(福士圭介、関根康人、佐久間博、森田康暉、ロビン・ワーズワース)
DOI :

お問い合わせ先

金沢大学環日本海域環境研究センター

准教授 福士圭介

E-mail : fukushi@staff.kanazawa-u.ac.jp
Tel : 076-264-6520

東京工業大学 地球生命研究所

教授 関根康人

E-mail : sekine@elsi.jp
Tel : 080-6708-0437

取材申し込み先

金沢大学 総務部 広報室 広報係

嘉信由紀

E-mail : koho@adm.kanazawa-u.ac.jp
Tel : 076-264-5024

金沢大学 理工系事務部 総務課 総務係

永森理一郎

E-mail : s-somu@adm.kanazawa-u.ac.jp
Tel : 076-234-6821

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

科学技術創成研究院 研究院公開2019開催報告

$
0
0

2016年から恒例となった科学技術創成研究院の研究院公開を、10月11日にすずかけ台キャンパスで開催しました。

各研究所セミナーの様子
各研究所セミナーの様子

科学技術創成研究院は、4つの研究所、3つの研究センター、11の研究ユニットから構成され、これらを有機的に連携させて新たな知の創造による社会貢献を目指しています。研究院公開2019では研究成果をわかりやすく紹介するため、研究所主催のセミナー、講演会、ポスターによる研究内容展示、及び研究室公開を開催しました。

午前中に開催したセミナーでは、未来産業技術研究所・フロンティア材料研究所・化学生命科学研究所よりそれぞれの研究所ならではのテーマ紹介があり、12人の研究者より機械・光通信・マイクロデバイス・半導体材料・負熱膨張材料・触媒・光合成・ナノ医薬品・共同研究拠点などのテーマについて、研究動向が紹介されました。

各研究所セミナーの様子

各研究所セミナーの様子

各研究所セミナーの様子

また午後には、最近特に注目されている下記の2つのテーマについて講演会を開催しました。テーマへの来場者の関心は高く、会場となったすずかけ台大学会館の多目的ホールはほぼ満席状態となりました。

  • AIチップ:世界の研究動向と東工大の研究戦略
    本村真人教授(AIコンピューティング研究ユニット)
  • 先進計算科学とマテリアルズインフォマティクスがもたらす無機材料研究の新展開
    大場史康教授(フロンティア材料研究所)

講演する本村教授
講演する本村教授

講演する大場教授
講演する大場教授

ポスター展示の様子
ポスター展示の様子

研究室のポスター展示は、R2棟オープンコミュニケーションスペースにて先導原子力研究所を含め、105の研究室、3つの共同研究拠点と3つの共同研究講座、1つの協働研究拠点の研究内容を終日紹介しました。展示会場ではメモをとる方やホームページに掲載されているポスターを確認する方が多く見られ、科学技術創成研究院の幅広い研究を知っていただく良い機会となりました。

研究室公開は来場いただいた方への特別なイベントで、56の研究室と12の研究センター・研究ユニットで開催しました。普段は立ち入ることのできない研究室を訪問し、研究者から直接研究内容や研究施設の説明を受けることにより、最前線の研究に触れていただきました。

研究室見学の様子

研究室見学の様子

研究室見学の様子

台風19号が関東に近づき、午後からはあいにくの悪天候となりましたが、企業関係者を中心に昨年と同程度の約270名の来場者数があり、科学技術創成研究院の研究に対する関心の高さがわかるイベントとなりました。

お問い合わせ先

科学技術創成研究院 研究院公開担当

E-mail : openlab@iir.titech.ac.jp

ナノサイズの「異空間」をもつ新物質 反芳香族分子で構築された新しい分子ケージの開発に成功

$
0
0

要点

  • 反芳香族分子を基盤にした分子ナノケージの構築に成功
  • 反芳香族分子に囲まれた内部空間の性質を理論的に解明
  • 取り込ませた分子と反芳香族分子間の反遮蔽効果を実験的に証明

概要

東京工業大学 理学院 化学系の山科雅裕助教(当時・JSPS海外特別研究員)とJonathan R. Nitschke教授(英国 ケンブリッジ大学)らの研究グループは、取り扱いが困難な反芳香族分子[用語1]を基盤にしたナノサイズの分子ケージ(かご状分子)の構築に世界で初めて成功した。この分子ケージの内部空間は、壁面の性質を反映した特異な空間性質を有していた。さらに、他の分子を取り込ませることで、「反芳香族壁のナノ空間」との分子間相互作用が初めて実験的に証明された。本研究成果は、いまだ明らかではない反芳香族分子の性質解明や、未発見分子の探索のための重要な手段になることが期待される。

従来、内部空間を有する分子(ホスト分子)の大部分は、安定な芳香族分子を基本骨格にしており、極めて不安定な反芳香族分子を基盤にしたホスト分子や、その内部空間の性質は全く解明されてこなかった。本研究では、室温でも安定に取り扱いが可能な反芳香族分子であるノルコロールに着目し、これに化学修飾を施すことで、反芳香族分子で構成された分子ケージを世界で初めて合成した。理論計算から、分子ケージを構成する反芳香族分子の寄与によって、内部空間が強い反遮蔽空間になっていることが判明した。さらに、内部空間にゲスト分子を内包すると、内包された分子の核磁気共鳴(NMR)[用語2]シグナルが顕著に低磁場シフトしたことから、分子間での反遮蔽効果を実験的に証明することにも成功した。

これらの研究成果は、本学 化学生命科学研究所の田中裕也助教と、ケンブリッジ大学のRoy Lavendomme博士、Tanya K. Ronson博士、コペンハーゲン大学のMichael Pittelkow准教授らとの共同の成果で、英国の総合科学雑誌『Nature(ネイチャー)』に2019年10月23日(英国時間)に掲載された。

研究の背景とねらい

内部に空間を有する分子(ホスト分子)に取り込まれた(内包された)ゲスト分子は、内部空間を形成する「壁」の性質に応じた特異機能性(異常な反応性や物性など)を発現することが知られている。1990年代に、分子が自発的に集まる現象(自己集合)を活用したかご状の分子ケージが初めて報告されて以降[参考文献1]、多くの研究グループによって、様々な形状のかご状・カプセル状のホスト分子が開発されてきた。従来のホスト分子は、ベンゼンやアントラセンなどの芳香族分子を基盤にしているため、その内部空間は「芳香族壁のナノ空間」と定義できる(図1a)[参考文献2]。このナノ空間の最大の特徴は、壁面からの誘起磁場による遮蔽効果[用語3]により、ゲスト分子の核磁気共鳴(NMR)シグナルが内包前後で高磁場シフトすることである。一方で、芳香族分子と正反対の性質をもつ反芳香族分子で構築された「反芳香族壁のナノ空間」では、逆方向の誘起磁場により、正反対のNMR挙動(反遮蔽効果)を発現することが予想される。しかしながら、反芳香族分子が極めて不安定な分子であるため、反芳香族分子を基盤にしたホスト分子やナノ空間(図1b)の性質は、超分子化学の歴史を俯瞰しても、全く明らかにされていなかった。

図1. (a)代表的な芳香族分子の化学構造と、「芳香族壁のナノ空間」の概略図 (b)ノルコロール1の化学構造と、「反芳香族壁のナノ空間」の概略図
図1.
(a)代表的な芳香族分子の化学構造と、「芳香族壁のナノ空間」の概略図 (b)ノルコロール1の化学構造と、「反芳香族壁のナノ空間」の概略図

「反芳香族壁のナノ空間」を構築するにあたり、反芳香族分子であるノルコロール1(図1b)(2012年に名古屋大学の忍久保洋教授が報告)[参考文献3]に着目した。ノルコロールには(1)室温で安定、(2)強い反芳香族性、(3)化学修飾可能といった化学的特徴がある。今回、研究グループは、ノルコロールを化学修飾した分子を合成し、「動的共有結合の自己集合[用語4] [参考文献4]」の手法を活用することで、世界初となる、反芳香族分子で構築された分子ケージの構築を行うとともに、空間性質や分子間での反遮蔽効果など、これまで不明だった「反芳香族壁のナノ空間」の性質を解明することを目指した。

研究内容

反芳香族壁のナノ空間を有する分子ケージの構築

まず、「動的共有結合の自己集合」の手法を利用するために、ノルコロール骨格に2つのアニリン部位を導入した分子2を合成した(図2a左)。続いて、合成した分子2(6当量)とホルミルピリジン4(図2a左、12当量)、Feイオン(4当量)をアセトニトリル中に混ぜることで、ビスイミノピリジル配位子2’(図2a中央)の形成を介して、定量的にM4L6型の分子ケージ3を得ることに成功した(図2a右)。分子ケージ3の構造は、1H NMR(プロトン核磁気共鳴装置)およびESI-TOF MS(飛行時間型 質量分析装置)分析で確認した。また、最終的なケージ構造は、単結晶X線結晶構造解析により決定した(図2b)。その結果、分子ケージ3は予想通り、正四面体状構造を形成しており、直径約1ナノメートル、体積1,150 Å3という比較的大きな内部空間を有していることが判明した。

図2. (a)反芳香族壁のナノ空間を有する分子ケージ3の合成 (b)分子ケージ3のX線結晶構造解析結果。左:stickモデル(黄色は内部空間を示す)、右:CPKモデル
図2.
(a)反芳香族壁のナノ空間を有する分子ケージ3の合成 (b)分子ケージ3のX線結晶構造解析結果。左:stickモデル(黄色は内部空間を示す)、右:CPKモデル

反芳香族の壁に覆われた内部空間の性質解明

続いて、理論計算により、内部空間の反芳香族性を評価した。今回の研究では、遮蔽(芳香族性)と反遮蔽(反芳香族性)の性質を定量的に評価できるNICS計算を利用した。まず、分子ケージ3の断面を計算し、空間内の反芳香族性を評価した。その結果、モデル分子3’では分子近傍にのみ反遮蔽領域が存在するのに対し(図3a左)、分子ケージ3では空間全体に反遮蔽の寄与が広がっていることが判明した(図3a右)。これは、分子ケージを構成する6個の反芳香族分子が協同的に働いた結果であり、空間全体を計算した結果からも裏付けられる(図3b)。このことから、分子ケージ3の内部空間は「反遮蔽空間」であり、高い反遮蔽値が空間全体で維持されていることがわかった。

図3. (a)断面のNICS計算結果(赤色:反遮蔽領域、青色:遮蔽領域)。左:モデル分子3’、 右:分子ケージ3 (b)空間のNICS計算結果(黄<橙<赤の順で反芳香族性が強くなる)
図3.
(a)断面のNICS計算結果(赤色:反遮蔽領域、青色:遮蔽領域)。左:モデル分子3’、 右:分子ケージ3 (b)空間のNICS計算結果(黄<橙<赤の順で反芳香族性が強くなる)

分子間における反遮蔽効果の実験的証明

「反芳香族壁のナノ空間」がゲスト分子に及ぼす影響を明らかにするため、分子内包実験を行った。まず、多環芳香族分子であるコロネン5(図4a左)と分子ケージ3をアセトニトリル中で混合したところ、60%の収率で2分子のコロネン5が分子ケージ3に内包された(図4a右)。NMR測定では、内包されたコロネンのシグナルは17 ppmに出現し、通常の溶液状態と比較して低磁場方向に+8 ppmもシフトすることが判明した(図4c)。同様に、他の6種類の多環芳香族分子の内包にも成功し、いずれも内包後のNMRシグナルは低磁場領域に出現した(図4b)。最も強いシフトを示したのがカーボンナノベルト6[参考文献5](図4b左下)を取り込んだ場合であり、24 ppm(+15 ppmのシフト)に内包された分子のNMRシグナルが現れた(図4d)。前述の通り、従来の芳香族分子で構築された分子ケージ内では、ゲスト分子のNMRシグナルは高磁場方向にシフトする。したがってこの現象は、ゲスト分子が壁面から強い反遮蔽効果を受けた結果といえる。これにより、「反芳香族壁のナノ空間」が「芳香族壁のナノ空間」とは正反対の挙動を示すことを、実験的に証明することに成功した。

図4. (a)分子ケージ3へのコロネン5の内包 (b)内包可能なゲスト分子の構造 (c)コロネン5のNMRシグナル (d)カーボンナノベルト6のNMRシグナル
図4.
(a)分子ケージ3へのコロネン5の内包 (b)内包可能なゲスト分子の構造 (c)コロネン5のNMRシグナル (d)カーボンナノベルト6のNMRシグナル

今後の研究展開

本研究では、反芳香族分子と自己集合の手法を利用することで、これまで確認されたことのない「反芳香族壁のナノ空間」を有する分子ケージを構築し、その性質を明らかにすることに成功した。これらの成果は、新しいタイプの分子ケージのコンセプトを提案するだけではなく、反芳香族分子との相互作用など、未解明の部分が多い反芳香族分子の性質を解き明かす重要な手段の一つになることが期待される。今後は、特異反応や不安定分子の特異安定化を通じて、「反芳香族壁のナノ空間」内でのみ観測される未知の分子の発見や、新材料の開発を探求していく計画である。

用語説明

[用語1] 芳香族分子と反芳香族分子 : 二重結合と単結合が交互に繋がった環状分子。環の上を動き回る電子数が異なり、芳香族分子は4n+2個、反芳香族分子は4n個の電子を持つ。一般的に、芳香族分子は安定で扱いやすいが、反芳香族分子は不安定であり分解しやすい。このため、芳香族分子がすでに医薬品や光・電子材料などに応用されているのに対し、反芳香族分子は、現在でも多くの研究グループが性質解明に精力的に取り組んでいる。

[用語2] 核磁気共鳴(NMR) : 外部磁場の中で原子が特定のラジオ波を吸収・放出する現象。原子の置かれた化学的または磁気的環境で周波数が異なるため、その周波数を解析することで分子構造・分子間相互作用の情報を得ることができる。

[用語3] 遮蔽効果と反遮蔽効果 : 芳香族・反芳香族分子は、外部磁場によって一方向の誘起磁場を発生する。この誘起磁場の方向性は、芳香族分子と反芳香族分子で逆になる。分子に含まれる水素原子に、外部磁場と逆方向の誘起磁場が作用すると、そのNMRシグナルは高磁場(右側)に移動する。これを遮蔽効果という。一方、順方向の誘起磁場が作用して生じる逆の挙動を反遮蔽効果という。

[用語4] 動的共有結合の自己集合 : ピリジン部位を有するアルデヒドと、2つ以上のアミンを有する分子、6つの手を持つ金属イオンを混合すると、イミン結合と金属配位結合の形成が同時に進行する。このとき、金属イオンの結合方向が明確に規定されているため、特定のケージ構造が得られる(下図)。

動的共有結合の自己集合

参考文献

[1] Fujita, M., Oguro, D., Miyazawa, M., Oka, H., Yamaguchi, K. & Ogura, K. Nature 378, 469–471(1995).

[2] Yoshizawa, M. & Yamashina, Chem. Lett. 46, 163–171 (2017).

[3] Ito, T., Hayashi, Y., Shimizu, S., Shin, J.-Y., Kobayashi, N. & Shinokubo, H. Angew. Chem. Int. Ed. 51, 8542–8545 (2012).

[4] Zhang, D., Ronson, T. K. & Nitschke, J. R. Acc. Chem. Res. 51, 2423–2436 (2018).

[5] Povie, G., Segawa, Y., Nishihara, T., Miyauchi, Y. & Itami, K. Science 356, 172–175 (2017).

論文情報

掲載誌 :
Nature
論文タイトル :
An antiaromatic-walled nanospace(反芳香族壁に囲まれたナノ空間)
著者 :
Masahiro Yamashina, Yuya Tanaka, Roy Lavendomme, Tanya K. Ronson, Michael Pittelkow, Jonathan R. Nitschke
(山科雅裕、田中裕也、ロイ ラベンドム、ターニャ K. ロンソン、マイケル ピッテルコフ、ジョナサン R. 二チケ)
DOI :
<$mt:Include module="#G-03_理学院モジュール" blog_id=69 $>

お問い合わせ先

東京工業大学 理学院 化学系 助教

山科雅裕

E-mail : yamashina@chem.titech.ac.jp
Tel : 03-5734-2311

ケンブリッジ大学 化学科 教授

Jonathan R. Nitschke

E-mail : jrn34@cam.ac.uk
Tel : +44-0-1223-33632

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661


岡田健一教授が第18回ドコモ・モバイル・サイエンス賞を受賞

$
0
0

工学院 電気電子系の岡田健一教授が、第18回ドコモ・モバイル・サイエンス賞 先端技術部門を受賞しました。ドコモ・モバイル・サイエンス賞は、NPO法人モバイル・コミュニケーション・ファンドが2002年に創設した賞で、情報通信技術および移動通信技術の発展と、次代を切り開く意欲的な若手研究者の育成に寄与することを目的に、優れた業績を挙げた研究者に対し与えられます。授賞式は、10月18日にANAインターコンチネンタルホテル東京(東京都港区)にて行われました。

授賞式の様子(前列右から3人目が岡田教授)

授賞式の様子(前列右から3人目が岡田教授)

受賞テーマ

CMOS集積回路による超高速ミリ波無線機の研究開発

受賞理由

岡田教授は、従来CMOS回路の無線機の未踏領域であったミリ波帯において、世界初のダイレクトコンバージョン方式により16 QAMの無線通信を実現した後、64 QAMによる50 Gbpsへと高速化を実現させました。さらに70-105GHz帯において世界最高伝送速度となる120 Gbpsを達成しました。

モバイル端末等の急速な普及により、無線通信は現代社会を支える根幹技術の一つとなっています。岡田教授の研究業績は、高周波数帯を用いた無線機における、超高速伝送のみならず、小型化・低消費電力化にも大きく寄与し、5G無線技術の実現ならびにBeyond 5Gへの貢献が期待されます。

今回の受賞を受けて、岡田教授は以下のようにコメントしています。

岡田健一教授
岡田健一教授

ミリ波による無線通信は、今後の社会インフラを支えるために必要不可欠な技術として期待されています。本賞で評価して頂いた研究成果はそのようなミリ波無線機による超高速無線通信をスマートフォン等で利用可能とするための技術です。現在、共同研究企業と実用化への研究開発に邁進しております。また、本賞で評価して頂いた成果は独力では成し得なかったものです。共同研究者の皆様や学生の皆様に大変感謝しています。

<$mt:Include module="#G-05_工学院モジュール" blog_id=69 $>

お問い合わせ先

岡田健一

E-mail : okada@ee.e.titech.ac.jp

Tel : 03-5734-2258

“動くDNA”による哺乳類の乳腺進化メカニズムを発見 レトロトランスポゾンが遺伝子制御の根源配列を増幅

$
0
0

要点

  • 乳腺形成に関わる遺伝子発現の制御配列の多くが“動くDNA”から生じた
  • レトロトランスポゾンが哺乳類の進化過程でエンハンサーの根源配列を増幅
  • 乳腺の形成機構の進化の解明に向けて飛躍的に前進

概要

東京工業大学 生命理工学院 生命理工学系の西原秀典助教は哺乳類の乳腺[用語1]形成に関わるゲノム配列の一部が“動くDNA”とも呼ばれる転移因子[用語2](トランスポゾン)によって生じたことを明らかにした(図1)。特にレトロトランスポゾン[用語3]とよばれるコピー配列を増幅させる転移因子によって遺伝子発現のオン/オフを決定するエンハンサー[用語4]の根源配列が段階的に増幅してきたことを突き止めた。

この結果は哺乳類の乳腺形成の遺伝子制御機構がいつどのように成立してきたのかを初めて解き明かすものである。このような大規模な制御機構の獲得は従来、考えられているような単純な塩基置換の蓄積だけでは説明できず、レトロトランスポゾンによるダイナミックなゲノム配列の改変が進化の重要な促進剤になったと考えられる。

この研究成果は10月23日付で英科学誌「Nucleic Acids Research」オンライン版に掲載された。

レトロトランスポゾンによる乳腺形成遺伝子のエンハンサー進化のモデル

図1. レトロトランスポゾンによる乳腺形成遺伝子のエンハンサー進化のモデル

研究の背景

乳腺は哺乳類特有の組織であり、仔に与えるミルクをつくる。乳腺の形成に関わる遺伝子の機能は徐々に明らかにされつつあるが、その遺伝子の発現を制御するメカニズムが哺乳類でどのように進化してきたのかはほとんど明らかになっていなかった。

乳腺の初期形成ではERα、FoxA1、GATA3、AP2γといった転写活性化因子[用語5] が様々な遺伝子のエンハンサーやプロモーターに結合し、乳腺形成に必要な遺伝子を発現する。哺乳類でこうしたメカニズムが進化する過程では、これらの転写活性化因子が結合する発現制御配列が大規模に獲得されてきたと考えられる。

そこで、その発現制御配列の起源を調べることにより、乳腺形成の分子機構がいつどのようなプロセスを経て獲得されてきたのかを辿(たど)ることにした。特にゲノム中で大量に存在する転移因子がその進化の鍵を握っているのではないかと考えた。

転移因子は“動くDNA”とも呼ばれ、ヒトゲノムの半分を占めている。中でも特にレトロトランスポゾンと呼ばれる種類は、そのコピー配列をゲノム中の様々な場所に挿入させる(コピー&ペースト型)。一般的に転移因子はゲノムに寄生する利己的DNAであり、個体の生存において役に立たないものと考えられている。しかし本研究では大量に増幅したレトロトランスポゾンがエンハンサー配列の根源となり、哺乳類の乳腺進化に関与したことを初めて明らかにした。

研究成果

本研究ではヒトゲノムにおける4種類の転写活性化因子(ERα、FoxA1、GATA3、AP2γ)の結合配列と転移因子との位置関係を解析した。その結果、全結合配列のうち約3分の1が転移因子によって生じたことを発見した。それらはエンハンサー特有のヒストン修飾[用語6]を受けており、しかも多くが進化的に保存された配列であった。この結果から、少なくとも数千の転移因子配列がエンハンサーとして機能していると考えられる。またそれらは乳腺形成の関連遺伝子の近傍に高密度で存在していた。 もしレトロトランスポゾンが結合配列の増大を引き起こしたのであれば(図1)その結合位置の多くはレトロトランスポゾン内部の特定の場所に由来するはずである。調べてみると実際に42種類のレトロトランスポゾンの内部で結合位置の極端な偏りが見られ、そのDNA配列も高度に保存されていた(図2)。

3種類のレトロトランスポゾン上における転写活性化因子の結合位置の分布。結合位置が極端に偏った領域ではモチーフが保存されている。こうした結合位置の偏在は42種類のレトロトランスポゾンで見られた。
図2.
3種類のレトロトランスポゾン上における転写活性化因子の結合位置の分布。結合位置が極端に偏った領域ではモチーフが保存されている。こうした結合位置の偏在は42種類のレトロトランスポゾンで見られた。

例えばその中の一つの配列は乳腺形成に必須なIgf1遺伝子[用語7]の近傍に位置しており、マウスの乳腺組織でもERαが結合している。この配列の機能を調べると真獣類[用語8]の共通祖先で獲得されたエンハンサー活性を持つことが分かった。この結果からレトロトランスポゾンが結合配列の根源を拡散増幅し、それを元にエンハンサーが進化したことが明らかになった。

また、これらのレトロトランスポゾンがどの時期に増幅したのかを解析した。その結果、ヒトゲノムでエンハンサー機能を持つレトロトランスポゾンのうち半数以上が白亜紀前期に真獣類の祖先において増幅したことが明らかになった(図3左)。さらに古第三紀には真猿類[用語9]内在性レトロウイルス[用語10]が活発に増幅し、さらなるエンハンサーの増加を引き起こしていた。このように二段階のレトロトランスポゾンの増幅がエンハンサーの獲得に大きく寄与したことを初めて明らかにした。

さらに、マウスの乳腺組織におけるERαの結合配列の由来も解析した。その結果、ヒトゲノムと同様にマウスの結合配列の一部もレトロトランスポゾンによって生じていたことを発見した。その起源を調べると、霊長類のレトロトランスポゾンで見られたように白亜紀前期の真獣類の祖先で増幅していた。

また興味深いことに、古第三紀のネズミ科の祖先においても内在性レトロウイルスによって結合配列の増幅が起きていた。このように霊長類と齧歯類(げっしるい)で独立に二段階にわたるエンハンサーの根源配列の増幅が起こっていることを突き止めた(図3右)。

結合配列を生み出したレトロトランスポゾンの獲得時期。霊長類(左)および齧歯類(右)のいずれの系統でも二段階の獲得時期があった。
図3.
結合配列を生み出したレトロトランスポゾンの獲得時期。霊長類(左)および齧歯類(右)のいずれの系統でも二段階の獲得時期があった。

今後の展開

乳腺に関わる遺伝子制御配列の進化ではレトロトランスポゾンの増幅が多大な影響を及ぼしていた。このことは、従来考えられているような単純な塩基置換の蓄積だけでは大規模な遺伝子制御機構の成立が十分に説明できないことを意味している。

今後は個々のエンハンサーが各遺伝子の発現に対してどのような役割を担っているのかを詳細に解き明かす必要がある。一方、乳腺のみならず、こうしたレトロトランスポゾンによるエンハンサーの進化は哺乳類の様々な組織で起こってきたはずである。それらを解き明かすことで、哺乳類が持つ組織形態の分子進化メカニズムの全容解明に大きく繋がると期待される。

謝辞

本研究は主に日本学術振興会科学研究費補助金および内藤記念科学振興財団の支援を受けて行われました。

用語説明

[用語1] 乳腺 : 哺乳類が仔に与える乳汁を産生する組織。乳腺の初期形成ではホルモンの一種であるエストロゲンの作用によって増殖し、エストロゲン受容体であるERαが転写活性化因子として働く。乳腺はすべての哺乳類が持つが、その組織形態は生物群ごとに少しずつ異なる。

[用語2] 転移因子 : ゲノム上で自身の配列もしくはそのコピー配列を移動させることのできるDNA配列。“動くDNA”とも呼ばれる。ヒトゲノムの約半分が転移因子で占められている。レトロトランスポゾン(コピー&ペースト型)とDNAトランスポゾン(カット&ペースト型)の2種類がある。

[用語3] レトロトランスポゾン : 転移因子の一種。転写と逆転写を介して自身のコピー配列をゲノム中で増幅させる(コピー&ペースト型)。レトロトランスポゾンには、SINE、LINE、LTR型レトロトランスポゾンが含まれる。

[用語4] エンハンサー : 遺伝子発現を制御するDNA配列。エンハンサーの活性化/不活性化によって、遺伝子発現の時期・組織・量が決定される。一つの遺伝子につき複数のエンハンサーが協調的に働く場合が多い。

[用語5] 転写活性化因子 : 遺伝子のプロモーターやエンハンサーに結合し、その遺伝子の発現を活性化させるタンパク質。

[用語6] ヒストン修飾 : 真核生物のゲノムDNAはヒストンと呼ばれるタンパク質に巻き付いて折りたたまれている。ヒストンタンパク質がメチル化やアセチル化などの修飾を受けることは遺伝子発現の制御に関与している。

[用語7] Igf1遺伝子 : インスリン様成長因子。体内の様々な細胞の増殖と成長に関わるホルモンとして機能する。Igf1が欠損したマウスでは乳腺の分枝形成に異常が起こることが知られている。

[用語8] 真獣類 : 哺乳類のうち単孔類と有袋類を除いた大きな分類群。現生の真獣類は完全な胎盤を持ち母体内の子宮内で胎児を育てることから有胎盤類とも呼ばれる。霊長類や齧歯類も真獣類に含まれる。

[用語9] 真猿類 : 霊長類の1グループ。ヒト上科(ヒト、チンパンジーなど)、旧世界ザル(ニホンザルなど)、新世界ザル(マーモセットなど)を含む。

[用語10] 内在性レトロウイルス : 転移因子の一種で、ゲノムに組み込まれたRNAウイルス様配列。他のレトロトランスポゾンと同様にゲノム中でコピー配列を増幅させることができる。

論文情報

掲載誌 :
Nucleic Acids Research
論文タイトル :
Retrotransposons spread potential cis-regulatory elements during mammary gland evolution
著者 :
Hidenori Nishihara
DOI :
<$mt:Include module="#G-11_生命理工学院モジュール" blog_id=69 $>

お問い合わせ先

東京工業大学 生命理工学院 生命理工学系

助教 西原秀典

E-mail : hnishiha@bio.titech.ac.jp
Tel : 045-924-5742

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

海洋酸性化により北西太平洋の一酸化二窒素放出量が増加

$
0
0

ポイント

  • 海洋酸性化に対するN2O生成プロセスの応答を検証
  • 海洋酸性化により北西太平洋でN2O生成が強まる可能性を示唆
  • 将来の気候変化予測の精緻化へ結びつく結果

概要

東京工業大学 物質理工学院 応用化学系の吉田尚弘教授(地球生命研究所 主任研究者兼務)と豊田栄准教授らの研究チームは、北西太平洋の酸性化により、主要な温室効果ガスでありオゾン層破壊ガスである一酸化二窒素(N2O)の放出が増加することを発見した。

北西太平洋で船上培養実験を行い、酸性化によってN2O生成速度が増加することを確認した。これは従来、想定されていた仮説と真逆の現象である。この発見はスイス連邦工科大学ローザンヌ校(EPFL)、東京大学および国立研究開発法人 海洋研究開発機構(JAMSTEC)の研究者らとの共同研究によるもので、11月11日(現地時間)付の「Nature Climate Change(ネイチャー クライメートチェンジ)」に掲載される。

研究の背景

二酸化炭素(CO2)の大気への放出量増加は地球温暖化の主たる原因となっている一方で、CO2が水に溶けると水素イオンを放出することから海洋を酸性化しつつあり、サンゴ礁などに影響が出始めている。海洋酸性化は、海水中の化学的な性質を変化させるため、炭酸カルシウムの骨格や殻を持つ海洋生物だけではなく、さまざまな生化学反応にも影響を及ぼす恐れがある。

米国科学アカデミー紀要に2011年に発表されたBemanらの研究論文では、海洋酸性化によって微生物のアンモニアを硝酸に変換する速度(硝化速度)が弱まることが明らかにされた。N2Oは、その変換過程の副産物として放出されるため、海洋酸性化によってN2O生成は弱まると想定されていた。

研究成果

研究チームは、2013~2016年に北西太平洋の亜寒帯から亜熱帯までの5ヵ所で海水を採取し、試料の水素イオン指数(pH)を意図的に下げて、海水中で硝化の副産物として放出されるN2Oの生成量がどのように変化するかを調べた。すると、全てのサイトで酸性化に伴いN2Oの生成が弱まることはなかった。

中でも亜寒帯の試料は、Bemanらの研究論文と同様に、酸性化に伴い硝化速度が弱まる一方で、N2Oの生成量は著しく増加した。さらに研究チームは、CO2の放出量が減ることなく酸性化が現在の速度(水素イオン指数で年0.0051の低下)で進めば、2100年には北西太平洋でのN2O生成速度は1.9~5.0倍になると見積もった。

今後の展開

今回の発見で、海洋酸性化により北西太平洋のN2Oの放出量は、減少ではなく増加する恐れがあることが明らかになった。しかし、N2Oには今回研究対象とした硝化以外にも複数の生成・消費プロセスがあり、海域によって主要な生成・消費プロセスは異なる。大気中のN2Oの増加は、温暖化を加速させ、オゾン層の回復を遅らせてしまう。酸性化に対する他のN2O生成・消費プロセスの応答とともに他の海域の調査が急務である。

本研究で海水を採取した場所(地図中の星印)および亜寒帯の観測点KNOTにおける採水作業の様子。研究船から採水器を海中へ投入し、硝化が活発に起こっている水深100-200 mの海水を採取した。
図1.
本研究で海水を採取した場所(地図中の星印)および亜寒帯の観測点KNOTにおける採水作業の様子。研究船から採水器を海中へ投入し、硝化が活発に起こっている水深100-200 mの海水を採取した。
本研究で行った船上培養実験の様子。海水に15Nトレーサー(用語1)を添加後、塩酸も添加することでpHを意図的に段階的に下げ、現場水温で暗所培養した。
図2.
本研究で行った船上培養実験の様子。海水に15Nトレーサー[用語1]を添加後、塩酸も添加することでpHを意図的に段階的に下げ、現場水温で暗所培養した。
酸性化実験の結果。縦軸は硝化速度とN2O生成速度、横軸はpHの減少量を示す。暖色系は亜熱帯、寒色系は亜寒帯の観測結果を示す。pHの低下に伴い、硝化速度は減少し、N2O生成速度は増加する傾向がみられる。
図3.
酸性化実験の結果。縦軸は硝化速度とN2O生成速度、横軸はpHの減少量を示す。暖色系は亜熱帯、寒色系は亜寒帯の観測結果を示す。pHの低下に伴い、硝化速度は減少し、N2O生成速度は増加する傾向がみられる。
N2O生成・消費プロセス。赤色と青色は硝化を、灰色は硝化菌脱窒と脱窒を示している。本研究海域のN2Oは、主に硝化と硝化菌脱窒によって生成する。赤色は酸性化によって強まるプロセスと増加する物質を示し、青色は酸性化によって弱まるプロセスと減少する物質を示す。今回の発見で、NH2OHからN2Oへの矢印が酸性化によって強まるプロセスであることが明らかになった。
図4.
N2O生成・消費プロセス。赤色と青色は硝化を、灰色は硝化菌脱窒と脱窒を示している。本研究海域のN2Oは、主に硝化と硝化菌脱窒によって生成する。赤色は酸性化によって強まるプロセスと増加する物質を示し、青色は酸性化によって弱まるプロセスと減少する物質を示す。今回の発見で、NH2OHからN2Oへの矢印が酸性化によって強まるプロセスであることが明らかになった。

謝辞

本研究は、スイス国立科学財団PBNEP2-142954、JSPS科研費JP23224013、JP15H05822、JP15H05471、JP17H06105の助成を受けたものです。本研究は、MR13-04、KS-16-8、YK16-16の研究航海で得られた試料を使用しました。

用語説明

[用語1] 15Nトレーサー : 窒素(N)には質量数14(14N)と15(15N)の2種類があり(同位体という)、自然界ではそれぞれ約99.6%、約0.4%の比率で存在している。15Nの比率を人工的に高めた窒素化合物を15Nトレーサーと呼ぶ。15Nトレーサーを自然の反応系の原料に微量加えると、生成する物質の15N比率がわずかに上昇するので、これを精密に質量分析することによって原料から生成物への15Nの移動を追跡することができ、反応速度を求めることができる。

論文情報

掲載誌 :
Nature Climate Change
論文タイトル :
Response of N2O production rate to ocean acidification in the western North Pacific
著者 :
Florian Breider (スイス連邦工科大学ローザンヌ校(EPFL)、中央環境研究室)、吉川知里(国立研究開発法人海洋研究開発機構(JAMSTEC)、海洋機能利用部門)、眞壁明子(国立研究開発法人海洋研究開発機構(JAMSTEC)、超先鋭研究開発部門)、豊田栄(東京工業大学 物質理工学院 准教授)、脇田昌英(国立研究開発法人海洋研究開発機構(JAMSTEC)、地球環境部門)、松井洋平(東京大学 大気海洋研究所)、川口慎介(国立研究開発法人海洋研究開発機構(JAMSTEC)、超先鋭研究開発部門)、藤木徹一(国立研究開発法人海洋研究開発機構(JAMSTEC)、地球環境部門)、原田尚美(国立研究開発法人海洋研究開発機構(JAMSTEC)、地球環境部門)、吉田尚弘(東京工業大学 物質理工学院 教授/地球生命研究所 主任研究者)
DOI :
<$mt:Include module="#G-07_物質理工学院モジュール" blog_id=69 $>

お問い合わせ先

東京工業大学 物質理工学院 応用化学系

准教授 豊田栄

E-mail : toyoda.s.aa@m.titech.ac.jp

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

ペロブスカイト太陽電池特性の再現性、安定性を向上 プレスセミナーを開催

$
0
0

10月28日、物質理工学院 応用化学系の脇慶子准教授によるプレスセミナーを大岡山キャンパスにて行いました。

太陽電池は、太陽の光エネルギーを電気に変換します。一般的に普及している太陽電池はシリコン太陽電池で、変換効率が高いものの重量や製造コストなどに課題があります。

ペロブスカイトと呼ばれる結晶材料を光吸収に用いるペロブスカイト太陽電池※1は、溶液塗布で簡便に作成することができ、次世代の太陽電池として注目されています。実用化するには、発電効率の向上、大面積化、高耐久性の付与などをクリアする必要があります。また、通常ペロブスカイト太陽電池のホール伝導層※2には高分子材料や金が使われていますが、吸湿性があり劣化しやすいという問題もあります。

今回のセミナーでは、酸素官能基※3を導入したカーボンナノチューブ紙状電極※4をホール伝導層に用いることで、安定的な発電効率の向上を実現した研究成果について説明がありました。

プレスセミナーの様子

プレスセミナーの様子

開発のポイント

ホール伝導層を炭素材料にする研究は最近盛んに行われており、安定性向上とコスト低減は達成できましたが、発電効率は従来型に及ばないことが課題でした。

脇准教授らは、長年取り組んできた多層カーボンナノチューブの研究をもとに、カーボンナノチューブ紙状電極にカルボキシル基(-COOH)やフェノール基(-OH)といった酸素官能基を導入し炭素の仕事関数を制御することによって、発電効率を高められると考えました。

官能基を導入したカーボンナノチューブを電極に用いて太陽電池を作製した直後の性能がばらついても常温常圧で放置すると、酸素官能基はペロブスカイトと強い相互作用をすることで水分の侵入を防ぎ、接合界面の再構成を引き起こすことがわかりました。再構成により接合界面が強固に安定化し、ペロブスカイト層を水から守る効果も発揮しました。その結果、電荷移動抵抗がさがり、初期効率が3%程度のセルであっても放置後11%に向上した例もあり安定性も高くなりました。

今後の展望

ペロブスカイト層の組成や厚さ、電極界面などを最適化することで、発電効率と安定性をさらに向上させ実用化を目指します。この最適化は、材料の本質を理解して初めて達成できるもので、基礎研究をさらに充実させていく必要があります。

ペロブスカイト太陽電池について説明する脇准教授

ペロブスカイト太陽電池について説明する脇准教授

資料

※1 ペロブスカイト太陽電池

ペロブスカイトと呼ばれる結晶材料を光吸収に用いた新しいタイプの太陽電池。塗布技術などの湿式法で容易に作製できるため、既存の太陽電池よりも低価格になると考えられています。

※2 ホール伝導層

太陽電池に光(光子)が当たると、光子のエネルギーによって電子と正孔が発生し、これらの粒子が移動することで電気が流れます。正孔を収集する電極をホール伝導層といいます。

※3 酸素官能基

有機化合物は、その性質によってグループに分類されます。同じグループに属する化合物がもつ、性質を特徴づける原子団を官能基といいます。アルコール類のヒドロキシル基(-OH)、カルボン酸類のカルボキシル基(-COOH)のように酸素を含む官能基を酸素官能基といいます。

※4 カーボンナノチューブ紙状電極

炭素(カーボン)でできた直径がナノメートルレベルのチューブ状の素材がカーボンナノチューブです。軽量で曲げなどに強く、電気を通す性質があります。このカーボンナノチューブを薄膜状にしたものは電極などへの応用が考えられています。

<$mt:Include module="#G-07_物質理工学院モジュール" blog_id=69 $>

お問い合わせ先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

世の中で広く用いられる強制対流冷却において「物体を冷やしながら発電する」新技術を創出 熱電気化学発電の強制対流冷却への統合とコンセプト実証

$
0
0

要点

  • データセンター・発電所・エンジンなど、積極的な冷却は社会を支えている。
  • 積極的な冷却とは「熱エネルギーの電気可換分」を失う行為で、現状未対処。
  • 強制対流冷却に発電を統合し、この対処を与える基本技術を創出、実証した。

概要

現代文明は冷却に支えられている。世界の発電量の2%を消費するに至ったデータセンターはCPU群の正常動作のために、発電所のタービンは効率を上げるために、積極的な冷却が必須である。冷却とは多量の熱エネルギーを高温側(排熱源)から低温側(作動流体)に移す作業だが、このとき「熱エネルギーの電気(仕事)への可換分」の多くが失われる。これまでの強制対流冷却では、冷却の必要上このロスは仕方ないとし、冷却の世の中での広い使用にも関わらず、対処がされてこなかった。

東京工業大学 工学院 機械系の村上陽一准教授の研究グループは、「強制対流冷却」と「熱電気化学発電」という、これまで別々に発展してきた技術を統合することにより、「物体を冷やしながら発電する」新技術を創出し、実証することに成功した。

本成果で重要なのは、実証セル部分に冷媒を流して通過させるのに要するポンプ仕事より多い発電量を得たこと(すなわち、発電のゲインが1を超えたこと)であり、この発見は、本コンセプトの妥当性を証明した極めて重要なものである。本成果は、これまで未対処だった上述の「強制対流冷却に伴うロス」を回収しうる、新世代冷却技術への転換マイルストーンとなる革新的な基本技術である。

本成果は王立化学会(英国)の学術誌「Physical Chemistry Chemical Physics」に11月15日に掲載された。本論文outerはオープンアクセスで無料公開されている。

背景

現代の我々の便利な生活は、電力と情報技術によって支えられている。それらを生み出す現場では、冷却が本質的に必要である。

遠隔地に建設されることの多いデータセンターでは、CPU群の動作と故障回避のために積極的な冷却が必須であり、多くは水の循環冷却(強制対流冷却[用語1])によって行われている。さらにその冷却水の循環にも電力(ポンプ仕事)が投入されている。一方、発電所では、火力・原子力を問わず、熱力学の原理法則によって、排熱面を積極的に冷却することが発電効率の維持に必須である。すなわち、冷却とは、我々の文明を支える根幹である。

ところが、熱を高温側(=排熱源)から低温側(=水などの冷却の作動流体)に移すと、熱エネルギーの電気(仕事)への可換分[用語2]の多くが失われるという原理的事実がある。平たく言えば、「積極的な冷却」とは「熱をどんどん低温側に移す作業」であり、それが積極的であるほど「本来電気に変えられたはずの熱の価値が壊される」ということである。この問題点は、緊急度の高い冷却の必要性に隠れ、これまで仕方ないものと考えられてきた。あるいは、当たり前すぎて気づかれることのなかった盲点といえる問題点であった。

実は、原理的に、温度差があり熱流がある場所からは、電力を産み出すことができる。強制対流冷却が広く社会で用いられていることを考えれば、この問題点の対処がこれまで効果的に取り組まれてこなかったのは、現代技術の盲点であり、空白であった。

研究成果

本学の研究グループ(研究主任:村上陽一准教授)は、この問題を認識した上で、その解決の一般的方法を与える技術の創出に向け研究を行ってきた。その指針としたのが、既存の固体熱電変換技術とは対照的な、「液体側で熱→電気変換を行う」ということ、および、その液体を冷却の作動流体に用いることであった。これは、流体ならば流れや流路の柔軟なデザインが可能で、また、温度境界層という固体面上での流れ中に急峻な温度差がつく層を利用することで、短距離間で発電に有利な大きな温度差を得やすい、という利点に着目したことによる。

この流体側での発電の具体的方法として、研究グループは、従来、強制対流冷却とは無関係に追究されてきた、静的な排熱利用技術の一種である「熱電気化学発電」に注目した。これは、冷却の義務が課せられていない「廃熱」に適用し、電力を回収するという技術であり、酸化還元対[用語3]という化学種を溶かした液中に、異なる温度の2本の電極を挿入し、温度差から電極間に起電力を生じさせる技術である。この技術の研究は、ほぼすべての場合について、密閉容器内で静的な状況(温度差による自然対流のみが存在する状況)で行われてきた。撹拌などを伴う準・動的な研究もあったが、この技術を強制対流冷却と結び付け、積極冷却の義務が存在する状況に統合する試みは従来存在しなかった。

本研究グループは、強制対流冷却に熱電気化学発電を統合することで、上述の「物体を冷やしながら発電する」のコンセプトを創出し、実証した。図1にこのコンセプトの模式図に示す。具体的に、作動流体には実用上不揮発・不燃とみなせる安全性の高いイオン液体[用語4]を選んで100 ℃以上の高温排熱面にも適用可能とし、酸化還元対には高い性能が知られていたコバルト錯体塩を使用した。

現状の冷却の状況と、その解決を行う本成果のコンセプトの模式図。

図1. 現状の冷却の状況と、その解決を行う本成果のコンセプトの模式図。

そして、この着想の実証セルを設計し、実験を行ったところ、上述の狙い通り、強制対流冷却をしながらの発電に成功した。具体的には、流路形状の最適化がされていない状態にも関わらず、620 W/(m2K)という十分に高い熱伝達率(固体表面冷却の性能指標)を達成した。この冷却と同時に、約2.5 cm角の小さな電極サイズにも関わらず、0.26 mWの発電に成功した。試験セルが小型であるために今回の発電量は大きくないが、これは今後、スケールアップや、酸化還元対濃度の増大、流体粘度を低下などの、様々な方策によって改善が見込める数値である。

重要なのは、発電量が、このセルに冷却流体を流すのに必要な流体駆動仕事を上回ったという点である。すなわち、本コンセプトにより創出した技術は、原理上、冷却ユニット部に流体を通過させる仕事よりも多くの電力を発生できる(=ゲインが1を超えている)ことが示された。この点が、本成果の極めて重要な側面であり、本コンセプトの妥当性を裏付けるとともに、今後、本創出技術に対する興味を喚起する重要な発見となっている。

「背景」で述べたように、年々消費電力が増加するデータセンターでは、CPU群自体の消費電力に加え、それを水冷するための冷却システムの稼働電力も大きなものとなっている。本成果は、今まで無駄に捨てていた、積極冷却に伴う「熱の電気(仕事)への可換分のロス」の一部を取り戻し、それを水冷のポンプ仕事に充てることが原理上可能であることを示したものであり、上述の従来技術の空白を埋め、新世代冷却技術への転換マイルストーンとなる基本技術となっている。

研究の経緯

本研究グループは、2014年にこのコンセプトの着想を得て、2015年4月より公益財団法人 東電記念財団の研究助成支援[参考文献1]を受けて研究を開始し、2017年5月には、解釈が十分ではない段階の予備結果を第54回日本伝熱シンポジウムにおいて発表PDFした。このたび、実験結果に対する十分な解釈を得、対外的に説得力をもって結果を公表できる段階に至ったこと、および、上述の「ゲイン > 1」という本コンセプトの妥当性を証明した重要知見を得たことを受け、下記の英文学術雑誌への論文掲載をもって、本プレスリリースを行うに至った。

今後の展開

本成果は実験室レベルの小型の実証セルによって得られたもので、その発電量は少ない。しかし、これは、上述のように様々な方策で増大が可能なものである。今後の展開として取り組むべき事項は、(1)スケールアップとその影響の検証、(2)流路形状と流れのデザインの最適化、(3)発生電力量に直結する、高い溶解濃度を達成できる新規な酸化還元対種の開発である。(1)と(2)は本研究グループにおいて引き続き研究を進める予定である。(3)については、共同開発パートナーとなる化学メーカーまたは化学研究者を募り、本技術の飛躍的な性能向上に向け、今後、中~長期的に展開してゆく予定である。

用語説明

[用語1] 強制対流冷却 : 流体(液体または気体)を駆動し、高温の固体面に接触させて流すことにより、固体面からの除熱を行う方法。

[用語2] 電気(仕事)への可換分 : 熱エネルギーは乱雑な原子・分子の運動の集まりなので、そのすべてを(整然として有用なエネルギーである)電気に変換することはできない。電気も仕事の一種である。熱エネルギーから電気(仕事)に変換できる割合は、「同量の熱エネルギーでも、高温にある熱エネルギーほど高く、低温にある熱エネルギーほど低い」という原理がある。これは熱力学の第2法則とよばれ、「熱エネルギーは、それが高温にあるほど有用」とも表現できる。

[用語3] 酸化還元対 : 物質から電子を奪うことを「酸化」、電子を与えることを「還元」という。電子をこれから受け入れる分子は「酸化体(Ox)」、電子をこれから他に与える分子は「還元体(Red)」という。これら両種分子の組(RedとOx)を酸化還元対と呼び、これらのペア間では、電子をキャッチボールするように、「Ox + 電子 ⇄ Red」の反応によって、繰り返し電子の受け渡しを行うことができる。

[用語4] イオン液体 : イオンのみからなる常温溶融塩。高い熱安定性と極めて小さい蒸気圧によって実用上不揮発・不燃とみなせるために、安全性の高い流体として、近年、バッテリーへの応用を含む、様々な応用が提案されている、比較的新しいジャンルの液体である。

参考文献

[1]
公益財団法人 東電記念財団outer 研究助成(基礎研究,平成27年4月~平成30年3月)
東電記念財団 財団ニュースouter No.51, 2018年8月発行.

論文情報

掲載誌 :
Physical Chemistry Chemical Physics(王立化学会、英国)
論文タイトル :
Integration of thermo-electrochemical conversion into forced convection cooling
著者 :
Yutaka Ikeda, Kazuki Fukui, and Yoichi Murakami
DOI :
10.1039/c9cp05028k outer(オープンアクセス)
(対応するプレプリント:arXiv:1908.08646 outer

参考:本成果のコンセプトに関する解説記事

村上 陽一,電気評論,vol. 103, pp. 66-69, 2018.(T2R2 東京工業大学リサーチリポジトリ)PDF

本解説記事は、なぜ従来からある固体熱電変換材料によってはこのコンセプトの実現が難しいかを、システムの観点から説明している。

<$mt:Include module="#G-05_工学院モジュール" blog_id=69 $>

お問い合わせ先

東京工業大学 工学院 機械系

准教授 村上陽一

E-mail : murakami.y.af@m.titech.ac.jp
Tel : 03-5734-3836

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

Viewing all 2008 articles
Browse latest View live