Quantcast
Channel: 更新情報 --- 研究 | 東工大ニュース | 東京工業大学
Viewing all 2008 articles
Browse latest View live

林直亨教授が日本健康開発財団研究助成優秀賞を受賞

$
0
0

リベラルアーツ研究教育院の林直亨教授が、第42回日本健康開発財団研究助成優秀賞を受賞しました。

日本健康開発財団は、温泉等の自然環境を利用した健康増進の研究・調査や疾病の早期発見を目指した総合健診センターの運営など、一貫して予防医学を基本に据えた健康づくりに取り組んでいます。研究助成の対象は、温泉療法や入浴に関する研究等であり、特に優秀な研究には、最優秀賞・優秀賞を授与しています。

今回、優秀賞を受賞した林教授の研究内容は「足湯が眼底の循環機能に及ぼす影響の研究」で、一般的な入浴に比較して、足湯であれば循環系への負荷が少なく、安全であることを示唆するものです。

林教授の受賞コメント

林直亨教授
林直亨教授

本研究室は、運動に伴う循環系応答や、応答を起こす要因について検討してきました。今回、日本健康開発財団の助成を受けて、足湯に伴う眼底血流や脳血流の応答を検討しました。一般的な入浴ですと、循環系への負担に注意する必要があることが知られていました。一方、足湯では眼底血流や脳血流、血圧の変化がほとんどなく、比較的安全であることが示唆されました。今後、様々な観点から足湯の安全性が確認され、一般の方々に加えて、循環器疾患を有する方でも足湯を安全に楽しめるようになることを期待しています。

リベラルアーツ研究教育院

リベラルアーツ研究教育院 ―理工系の知識を社会へつなぐ―
2016年4月に発足したリベラルアーツ研究教育院について紹介します。

リベラルアーツ研究教育院(ILA)outer

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先
リベラルアーツ研究教育院事務室
Email: libarts@jim.titech.ac.jp


人工細胞の中でDNAをコンピュータとして使うことに成功―生体内で働く分子ロボットの実現に向けて―

$
0
0

要点

  • 細胞膜構成要素である脂質分子で覆われた人工細胞中でDNAによるコンピューティングに成功した
  • 論理ゲートの一種であるAND演算を行い、入力のDNA分子を変換し、RNAとし、出力した
  • 出力されたRNA分子の情報を、ナノポアを用いた電流計測により電気信号として取り出せた

概要

東京農工大学工学研究院生命機能科学部門の川野竜司テニュアトラック特任准教授、東京農工大学大学院生の大原正行(当時)、東京工業大学情報理工学院情報工学系の瀧ノ上正浩准教授のグループは、DNA分子を用いて計算を行うDNAコンピューティングの計算結果である出力分子をナノポア[用語1]と呼ばれるチャネル型の膜タンパク質により、電気情報として検出することに成功しました(図1)。私たちが日常使用しているコンピュータや、それらを組み込んだ工学ロボットは、電子を情報媒体として2進数の計算情報処理を行います。一方、分子ロボット[用語2]は分子(DNA/RNA)を情報媒体として進数やより高度な演算により情報処理を行うことを目指しています。今回の研究では2進数の一つである“AND”演算[用語3]をDNAコンピューティングで行いました。DNAを入力分子としてRNAに変換・出力し、出力RNAをナノポアによる電気化学計測により検出に成功しました。これにより、従来用いられていた方法よりも短時間で出力分子を情報として取り出すことが可能となりました。また分子の情報を電気情報に変換可能なことから、分子ロボットとエレクトロニクスデバイスの融合に繋がる結果となりました。今後、高度な機能を有す分子ロボットを構築することにより、体内で病気を診断・治療できるシステムへの応用が期待されます。

本研究成果は、4月17日付けの「ACS Synthetic Biology」(電子版4月17日付just accepted in ACS)に掲載されました。

人工細胞膜中に再構成したナノポアタンパク質によりDNA演算分子を検出する。入力のDNA分子を変換しRNA分子として出力、その後ナノポアを通過するRNA分子の情報を電気的に取り出した。

図1. 人工細胞膜中に再構成したナノポアタンパク質によりDNA演算分子を検出する。入力のDNA分子を変換しRNA分子として出力、その後ナノポアを通過するRNA分子の情報を電気的に取り出した。

現状

DNAコンピューティングは、DNA配列を利用した情報処理・計算技術であり、次世代の並列計算技術を目的として研究されてきました。最近では、DNAが元々生体で使われていることに着目し、生体親和性が高い材料として、in vivoで診断・治療などの医療応用や、分子ロボットと呼ばれる分子を使って創るロボットの情報処理を行うシステムとして期待されています。これまで我々はDNAコンピューティングの出力結果を高速にかつ分子レベルで検出可能なナノポア計測に関し研究を行ってきました。

研究体制

本研究は、東京農工大学大学院工学府生命工学専攻の大学院生大原正行(当時)、東京工業大学情報理工学院情報工学系の瀧ノ上正浩准教授、東京農工大学工学研究院生命機能科学部門の川野竜司テニュアトラック特任准教授らによって実施されました。

研究成果

今回我々は、配列の異なる2種類のDNAを入力分子とし、RNA合成酵素による分子変換(DNAの情報に基づきRNAを合成する)を組み合わせ、2種類の入力DNAが入力された場合のみRNAが出力分子としてアウトプットされるという情報処理を行う「ANDゲート」を人工細胞モデルであるマイクロドロップレット中に作製しました(図1)。出力されたRNA分子が、ドロップレット表面の人工細胞膜部分に設置したナノポアを通過する際に電流を生じることから、電気情報として計測することに成功しました。本システムはMEMS(MicroElectroMechanicalSystem)技術[用語4]を利用した、マイクロデバイスに組み込むことで(図2)、ANDゲートに必要な4種類の演算を同時に行い、出力を得ることに成功しました。

DNA演算、ナノポア計測を行ったマイクロデバイス。デバイス中に人工細胞膜モデルとなるドロップレットを作製し、その中でDNA演算、ナノポア計測を同時に行うことに成功した。

図2. DNA演算、ナノポア計測を行ったマイクロデバイス。デバイス中に人工細胞膜モデルとなるドロップレットを作製し、その中でDNA演算、ナノポア計測を同時に行うことに成功した。

今後の展開

本研究によって、DNAコンピューティングの出力分子を分子レベルで検出でき、また分子の情報を電気情報として取り出すことができました。今後、分子ロボットの情報処理システム構築の重要なツールになるほか、DNAコンピューティングを利用したin vivo診断・治療の役立つ技術として発展していくと期待しています。

本研究は、文部科学省 科学研究費助成事業新学術領域「分子ロボティクス」のプロジェクトとして推進しました。

用語説明

[用語1] ナノポア : 膜タンパク質やイオンチャネルによって、細胞膜中に形成されるナノサイズ(直径1.4 nm程度)の孔。

[用語2] 分子ロボット : ロボット工学の方法論を導入して分子をシステム化し、高度な「感覚」・「知能」・「運動」を有するプログラム可能な人工分子システムである。

[用語3] AND演算 : 論理ゲートのひとつで、入力された信号が全て真「1」である時のみ、演算結果として「1」を出力する回路である。ICチップ等に搭載されており機械が計算する上で基本要素となる。

[用語4] MEMS技術 : 半導体微細加工技術。フォトリソグラフィーなどの微細加工技術により、マイクロサイズの部品を作製し、特にこれを電気による制御と組み合わせたものを指す。

論文情報

掲載誌 :
ACS Synthetic Biology
論文タイトル :
Nanopore Logic Operation with DNA to RNA Transcription in a Droplet System
著者 :
Masayuki Ohara, Masahiro Takinoue,and Ryuji Kawano
DOI :

情報理工学院

情報理工学院 ―情報化社会の未来を創造する―
2016年4月に発足した情報理工学院について紹介します。

情報理工学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

東京農工大学 大学院工学研究院
生命機能科学部門
テニュアトラック特任准教授 川野竜司

E-mail : rjkawano@cc.tuat.ac.jp
Tel / Fax : 042-388-7187

東京工業大学 情報理工学院 情報工学系
准教授 瀧ノ上正浩

E-mail : takinoue@c.titech.ac.jp
Tel / Fax : 045-924-5654

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

葉緑体増殖の基礎的しくみを解明―葉緑体分裂・増殖時にDNA分配を制御する酵素の発見―

$
0
0

概要

植物は光合成により二酸化炭素を固定し酸素を放出するとともに、有機物を合成し地球上のほとんど全ての生命活動を支えています。光合成はDNAの複製と分配を伴いながら分裂・増殖する葉緑体で行われます。小林優介 京都大学 博士課程学生、西村芳樹 京都大学 大学院理学研究科 助教を中心とするグループは、山口大、東工大(岩﨑博史 科学技術創成研究院 教授)、法政大、立教大、日本女子大グループと共に、葉緑体がもつ“葉緑体DNA(葉緑体核様体)”の分配(遺伝)を制御する遺伝子MOC1と、この遺伝子がコードする葉緑体型ホリデイジャンクション解離酵素を発見しました。ホリデイジャンクションとはDNA損傷の修復、複製、減数分裂の際にみられる、DNA配列がよく似た部分同士で組み換え(相同組み換え)が進む過程であらわれる構造ですが(図1)、葉緑体核様体ではこの構造がどのように切断されているかわかっていませんでした。今回の基礎的な発見から、葉緑体における相同組換え機構の解明、さらには新たな物質生産に向けた応用研究への展開も期待されます。論文は5月12日午前3時(日本時間)、Scienceに掲載されました。

DNA相同組換えとホリデイジャンクション形成過程の模式図

図1. DNA相同組換えとホリデイジャンクション形成過程の模式図。
今回はじめて葉緑体型ホリデイジャンクション解離酵素が発見された。

背景

光合成の場である葉緑体には、シアノバクテリアを起源とする独自の葉緑体DNAがあり、それが多様なタンパク質によって折りたたまれて“核様体”を構築します。葉緑体核様体は、いわば葉緑体にとっての「核」であり、細胞核の場合と同様に、その複製・分配は葉緑体の分裂に先立って行われます。核様体の複製や分裂・分配(遺伝)は光合成の維持や植物の生存上必須な要素ですが、これがどのようなしくみで制御されているのかは不明でした。

野生株(左)とmoc変異体(右)の葉緑体(黄)

図2. 野生株(左)とmoc変異体(右)の葉緑体(黄)。赤は葉緑体の自家蛍光。野生株ではひとつの葉緑体あたり5~10個に分散している葉緑体核様体が、moc変異体では一つの塊になってしまう(矢印)。

研究手法・成果

葉緑体(赤)の分裂に際し、moc変異体の葉緑体核様体(黄)が不均等に分配される様子(矢印)

図3. 葉緑体(赤)の分裂に際し、moc変異体の葉緑体核様体(黄)が不均等に分配される様子(矢印)。本来は4つ全ての葉緑体に均等に分配されるはずが、一つの葉緑体のみに分配されている。

今回の研究では、葉緑体核様体の観察や遺伝学的解析が容易な単細胞緑藻クラミドモナスを対象としました。葉緑体核様体の形が異常なmoc変異体を単離し、その原因遺伝子を突き止めることが最初の課題でした。moc変異体では、通常1つの葉緑体あたり5~10個ある葉緑体核様体が1つの大きな塊になってしまい(図2)、葉緑体分裂の際にも均等に分配されません(図3)。原因遺伝子同定の過程で、MOC1という未知の遺伝子に辿り着きました。この遺伝子は緑藻だけでなく陸上植物においても広く保存されています。MOC1 がコードするタンパク質の構造予測を元にした生化学的解析をおこなったところ、このタンパク質がホリデイジャンクションの中央に結合して、構造を正確に切断する葉緑体型ホリデイジャンクション解離酵素であることが明らかになりました(図1)。

更にDNAオリガミと原子間力顕微鏡技術を組み合わせ、ホリデイジャンクションが切断される様子の観察に挑戦しました。その結果、MOC1タンパク質がホリデイジャンクションの中央部に結合し、切断する様子をはっきりと捉えることに成功しました(図4)。

葉緑体DNAは、相同組換えによって生じたホリデイジャンクションなどによって複雑に絡み合った構造をとっていると考えられています。それを今回発見された酵素が正確に切断することによって、正常な葉緑体核様体の形や遺伝が厳密に制御されているということが分かりました。葉緑体のホリデイジャンクション解離酵素はこれまで見つかっておらず、今回が世界初の報告となりました。この発見により、葉緑体における相同組換え機構の解明にむけた重要な手がかりを得ることができました。

MOC1タンパク質がDNAオリガミ技術によってつくられたホリデイジャンクション(左)の中央部に結合し(中央)、切断する(右)過程を高速原子間力顕微鏡で捉えた

図4. MOC1タンパク質がDNAオリガミ技術によってつくられたホリデイジャンクション(左)の中央部に結合し(中央)、切断する(右)過程を高速原子間力顕微鏡で捉えた。

波及効果・今後の予定

今回の研究の結果、ホリデイジャンクション解離酵素が葉緑体において初めて同定されました。そしてMOC1遺伝子は葉緑体分裂に伴って葉緑体核様体を正確に分配(遺伝)させる上で欠かせないものであることが分かりました。今回発見したホリデイジャンクション解離酵素がどのようにしてホリデイジャンクションを正確に認識し、結合し、切断するのか、加えてどのような因子と相互作用して相同組換えを実現しているのかを調べていくことで、葉緑体における相同組換え機構の理解が進むはずです。それにより、葉緑体自身のDNA修復能力を高め、変異を引き起こすような環境に適応する能力の高い植物の創出につながるかもしれません。また葉緑体形質転換技術の向上、さらには葉緑体を利用した新たなものづくりにも貢献できるかもしれません。

研究プロジェクトについて

本研究は日本学術振興会科学研究費助成事業(課題: 16K14768, 17H05840, 特別研究員制度(DC1: 26・786))の支援を受けました。

論文情報

掲載誌 :
Science
論文タイトル :
Holliday junction resolvases mediate chloroplast nucleoid segregation
著者 :
Yusuke Kobayashi, Osami Misumi, Masaki Odahara, Kota Ishibashi, Masafumi Hirono,
Kumi Hidaka, Masayuki Endo, Hiroshi Sugiyama, Hiroshi Iwasaki, Tsuneyoshi Kuroiwa, Toshiharu Shikanai, Yoshiki Nishimura
DOI :

問い合わせ先

京都大学理学研究科植物遺伝学教室

西村芳樹 助教
Email : yoshiki@pmg.bot.kyoto-u.ac.jp
Tel : 075-753-4147

東京工業大学に所属する研究者への取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975

BSジャパン「未来EYES」に地球生命研究所の藤島皓介研究員が出演

$
0
0

本学 地球生命研究所(ELSI)の藤島皓介研究員が、BSジャパン「未来EYES(ミライアイズ)」に出演します。

「未来EYES」は、高度経済成長期に作り上げられた仕組みが制度疲労を起こしている日本において、独自のこだわりや屈指の努力で近未来を切り開こうと熱い情熱で探求する人と企業を追うドキュメンタリー番組です。

今回は『「アストロバイオロジー」生命の起源 人類はどこからやってきたのか?』というタイトルで、藤島研究員の研究に迫ります。

藤島皓介研究員(Credit: Nerissa Escaniar)
藤島皓介研究員
(Credit: Nerissa Escaniar)

藤島皓介研究員のコメント

私は現在、東工大ELSIとNASAエイムズ研究所を行き来しながら、アストロバイオロジーと呼ばれる「生命の起源」や「地球外生命の可能性」を俯瞰する学問分野の研究をしています。

今回はELSIで行っている生命システムに必須な核酸やアミノ酸でできたポリマーの進化研究について取材を受けました。「代謝」や「遺伝」といった地球生命にとって欠かすことのできない機能が原始地球環境中でどのように誕生し、維持されてきたのかに興味を持っています。

番組ではELSI内の国際的なネットワークや若手学生を対象とした教育的な取り組みも紹介されます。アストロバイオロジー研究の魅力が一人でも多くの方に伝われば幸いです。

  • 番組名
    未来EYES
  • タイトル
    「アストロバイオロジー」生命の起源 人類はどこからやってきたのか?
  • 放送予定日
    2017年5月21日(日) 22:30 - 23:00

お問い合わせ先

広報・社会連携本部 広報・地域連携部門

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975

最高の超伝導転移温度(Tc)を持った鉄系超伝導物質の新たな特徴を発見

$
0
0

要点

  • 鉄系超伝導体である砒酸水素化鉄サマリウム(SmFeAsO1-xHx)に対しSmサイトとHサイトの同位体置換に成功
  • 水素アニオンを用いることで従来法よりも5倍量以上の電子注入に成功
  • 過剰に電子を注入すると、鉄ニクタイド中で最も大きな磁気モーメントを持つ反強磁性相が現れる

概要

東京工業大学 科学技術創成研究院 フロンティア材料研究所の飯村壮史助教、元素戦略研究センターの松石聡准教授、細野秀雄教授、岡西洋志大学院生(現デロイトトーマツコンサルティング)らの研究グループは、鉄系超伝導体中で最も高い超伝導転移温度(Tc)を示す砒酸水素化鉄サマリウム(SmFeAsO1-xHx)のSmサイトとHサイトへの同位体置換に成功し、新たな反強磁性相を発見した。今回発見した反強磁性相が示す磁気モーメントは鉄ニクタイド中で最も大きく、より局在化したスピンが高温超伝導の発現に重要であることが明らかとなった。さらに高いTcをもつ鉄系超伝導物質の設計指針の道が拓けてきた。

本研究は、文部科学省 元素戦略プロジェクト<研究拠点形成型>の一環として行われたもので、一部の実験は高エネルギー加速器研究機構とフランスのラウエ・ランジュバン研究所との共同で実施された。本成果は5月15日に「米国科学アカデミー紀要(Proceedings of the National Academy of Sciences of the United States of America)」のオンライン速報版に掲載された。

研究の背景

2008年に本研究グループが発見した鉄系超伝導体は、1986年に報告された銅酸化物以来の革新的な高温超伝導物質[用語1]だ。その超伝導転移温度(Tc)の高温化と発現メカニズムの解明を目指し、世界中で激しい競争が繰り広げられている。常圧下での最高TcはSmFeAsO1-xAxA = H or F)が示すTc = 58 Kにまで向上しており、これは銅酸化物系を除くと最も高い値となっている。

鉄は大きな磁気モーメント[用語2]を持つため、超伝導の発現には最も不向きと考えられてきた。しかし、鉄系超伝導物質が発見されて以降は、鉄の磁気モーメントの空間的な揺らぎ[用語3]がむしろ、超伝導を引き起こす起源だと考えられている。

中性子回折法[用語4]は磁気モーメントや磁気構造を調べるための最も強力な手段の一つだ。鉄系超伝導物質の発見当初から中性子回折法を用いて様々な鉄系化合物の反強磁性構造[用語5]が特定されてきた。しかし、サマリウム(Sm)は全元素中でガドリニウムに次いで高い中性子吸収係数[用語6]を持つため、SmFeAsO1-xAxからの回折中性子数が極端に少なく、その磁性に関しては全く研究が進んでいなかった。

本研究では、吸収の大きい天然のSmを吸収の小さな同位体(154Sm)に置換することで、154SmFeAsO1-xAxの中性子回折及び反強磁性構造の決定を試みた。

さらに、本グループが開発した水素置換法を適応することで、従来から用いられていたフッ素よりも5倍以上の電子注入した物質の作製にも成功、その磁気特性も調べた。

研究成果

原料には、砒化鉄(Fe2As、FeAs)、脱水した酸化154サマリウム(154Sm2O3)、54Sm2O3をイオン交換して得た砒化154サマリウム(154SmAs)と154Sm2O3を製錬し重水素化した重水素化154サマリウム(154SmD2)を用いた。これら原料を混合して、成型後、5万気圧、1,300 ℃下で30分加熱することで砒酸重水素化鉄154サマリウム(154SmFeAsO1-xDx)を得た。図1(a)に電子を注入していない154SmFeAsOの反強磁性構造を示す。Fe上の反強磁性構造は、ストライプ型をとり、かつ、鉄の磁気モーメントは0.66(5) μB/Feとなった。これらの特長は鉄系超伝導物質に広く見られる反強磁性相とよく一致する。

一方、重水素置換を介して電子を過剰に注入した154SmFeAsO0.27D0.73では、低温で正方晶から斜方晶への構造相転移、及び常磁性から反強磁性への磁気転移が観測された。この反強磁性相は原子の周期構造からずれた格子非整合構造[用語7]を持つことが分かり、さらに鉄の磁気モーメントは10 K下において2.73(6) μB/Feと非常に大きな値を示した。この値は鉄が欠損し絶縁体化した鉄セレナイドに次いで大きく、鉄ニクタイド中では最大である。

154SmFeAsO(a)と 154SmFeAsO0.27D0.73(b)の反強磁性構造

図1. 154SmFeAsO(a)と154SmFeAsO0.27D0.73(b)の反強磁性構造

図2に154SmFeAsO1-xDxの電子注入量(x)に対する各転移温度の依存性を示す。鉄系中で最も高いTcを示す超伝導相は0.05 < x ≤ 0.45において生じる。その左右を囲むように二つの反強磁性相が発達することが本研究によって初めて明らかとなった。第一反強磁性相(0.00 ≤ x ≤ 0.05)は他の鉄系超伝導体全般に見られるストライプ型の磁気構造をとる。一方で、第二反強磁性相(0.56 ≤ x ≤ 0.81)は鉄ニクタイド中で最大の磁気モーメントと特異な格子非整合構造を持つ。これらの結果は、第二反強磁性相から生じる大きな磁気モーメントの揺らぎが高い温度での超伝導の発現に重要な役割を果たしていることを示唆している。

明らかになった154SmFeAsO1–xDxの電子相図

図2. 明らかになった154SmFeAsO1-xDxの電子相図

今後の展望

今回の結果により、大きな磁気モーメントを持つ反強磁性相の近傍で、高い温度での超伝導が発現することが明らかとなった。今後、第二反強磁性相の発現機構を詳細に解析することにより、高いTcを持つ画期的な高温超伝導物質の材料設計が可能になると考えられる。

用語説明

[用語1] 高温超伝導物質 : 一般に単体金属や合金に見られる超伝導転移温度(最高で~30 Kほど)よりも高い温度で超伝導を示す物質。1986年に発見された銅酸化物系と2008年に発見された鉄系超伝導体が主な代表例である。

[用語2] 磁気モーメント : 磁石の強さを表すベクトル量。電子の自転や原子核周りを周回する電子の軌道運動によって生じ、磁性イオンと呼ばれる鉄やコバルトの陽イオンは大きな磁気モーメントを持つ。

[用語3] 揺らぎ : ある測定量の空間的もしくは時間的な平均値からの変動。超伝導の発現には磁気モーメントが縦、横方向に揺らぐ空間的な揺らぎが寄与する。

[用語4] 中性子回折法 : 物質中の原子間隔と近い波長を持つ中性子を照射し、原子核や磁気モーメントによって反射された中性子線を解析することで結晶や磁気モーメントの周期構造を決定する手法。中性子は磁気モーメントを持つため、X線では観測できない磁気構造の解析が可能になる。

[用語5] 反強磁性構造 : 隣接する磁気モーメントが互いに反平行に整列している磁気構造。

[用語6] 中性子吸収係数 : 中性子が原子の原子核に衝突し吸収反応を起こす確率を表す量。中性子は電荷をもたないため、物質内で容易に原子核に接近し各種の相互作用を起こす。そのうち吸収反応に起因する割合が中性子吸収係数で表される。

[用語7] 格子非整合構造 : 磁気モーメントの周期が結晶中の原子の周期から非整数倍ずれた構造。磁気モーメントと原子配列の周期が一致した構造を格子整合構造と呼ぶ。

論文情報

掲載誌 :
Proceedings of the National Academy of Sciences of the United States of America
論文タイトル :
Large-moment antiferromagnetic order in overdoped high–Tc superconductor 154SmFeAsO1−xDx
(和訳:過剰ドープ高温超伝導体154SmFeAsO1-xDxにおける大きなモーメントを持つ反強磁性秩序)
著者 :
Soshi Iimura, Hiroshi Okanishi, Satoru Matsuishi, Haruhiro Hiraka, Takashi Honda, Kazutaka Ikeda, Thomas C. Hansen, Toshiya Otomo, and Hideo Hosono
(飯村 壮史、岡西 洋志、松石 聡、平賀 晴弘、本田 孝志、池田 一貴、トーマス ハンセン、大友 季哉、細野 秀雄)
DOI :

お問い合わせ先

東京工業大学 科学技術創成研究院 フロンティア材料研究所
助教 飯村壮史

E-mail : s_iimura@mces.titech.ac.jp
Tel / Fax : 045-924-5134

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

特定の化学物質を簡便に検出できる高分子ゲルを開発 ―環境汚染物質トリハロメタンを光照射で検出―

$
0
0

要点

  • 特定の物質を認識し、光照射で蛍光消光・分解する光トリガー分子を発見
  • 光トリガー分子を含んだゲルを用いて環境汚染物質を簡単に検出
  • クロロホルムと塩化メチレンを識別できる優れた選択性を持つ

概要

東京工業大学 物質理工学院 応用化学系の佐々木俊輔博士研究員(日本学術振興会特別研究員)、小西玄一准教授らの研究グループは、特定の組成を持つ化学物質を認識し、紫外光(UV)を照射すると蛍光が消光されて分解する、光トリガー分子を発見した。この分子は青色発光色素で、これを架橋剤(つなぎ)として用いて、光検出と光分解による形状変化でターゲットを確認できる高分子ゲルを開発した。これは、環境汚染物質であるトリハロメタン類を市販のブラックライト(UV光)を使うだけで、簡単に検出することができる。

今回用いた光トリガー分子は1,4-ビス(ジピペリジル)ナフタレンという青色発光色素である。この色素は、クロロホルムでは蛍光消光・分解してしまうが、塩化メチレンでは青色発光し、分解しない。消光と分解は連動しており、2つの現象にはシナジー効果が観察される。

本研究成果は5月9日付けの米国化学会「Macromolecules(マクロモレキュールズ)」に掲載された。

背景

高価で持ち運びのできない分析機器を必要とせず、目視できる形で有害物質や危険物質を簡便に検出する方法の開発は、環境計測や爆発物検知において重要性を増している。今日、ターゲット物質に応じて、適切なセンサー分子を搭載した様々な形態のデバイスが作られている。中でも光や色によって検知できるシステムは、迅速に大量のサンプルを分析することができ、さらに感度に優れた蛍光発光を用いることが有用とされている。しかしながら、検出対象となる物質は増え続けており、画期的な検出機器の開発が求められていた。今回対象としたトリハロメタンは、水の塩素消毒の際に水中に含まれる有機物と反応して生成するか、直接投棄によって環境中に蓄積される有害な水質汚染監視物質である。

研究の経緯

研究グループは、最近、溶液では光らず、固体になると発光する凝集誘起発光分子の新しい分子群と発光・消光メカニズム[参考論文1,2]を発見。その発光メカニズムを詳細に検討する中で、いくつかの分子が今回の高分子ゲルに応用可能な光トリガーの性質を持つことを発見した。

研究成果

光トリガーは、ターゲット物質と出会うと(1)蛍光が消光(蛍光強度が低下)し、(2)自身を分解するという2つの反応が起きる。この蛍光消光と分解は連動しており、シナジー効果が存在する。このような機能分子を高分子ゲルの架橋剤とすることで、特定の物質を加えて光照射すると、蛍光消光と分解による流動化で、形状が変わり、物質の検出を行うことができる系の設計が可能だ。(図1)

本研究の概念

図1. 本研究の概念

光トリガー分子は、1,4-ビス(ジピペリジル)ナフタレン(図1)という単独で、青色発光を示す蛍光色素である。この色素を組み込んだゲルは、炭素に塩素原子3つ結合したトリハロメタンの場合に蛍光が消光し、炭素に塩素原子2つ結合したジハロメタンの場合は、消光せず青色発光となる。(図2)に示すように、クロロホルム(CHCl3)と塩化メチレン(CH2Cl2)を選択的に検出することができる。

トリハロメタン(-CCl3; クロロホルムCHCl3)を選択的に蛍光消光する

図2. トリハロメタン(-CCl3; クロロホルムCHCl3)を選択的に蛍光消光する

この光トリガー分子を架橋剤に用いた高分子ゲルにクロロホルムを加えてUV光を照射すると、クロロホルムとトリガー分子の錯体が生成され、蛍光が消光し、その錯体を経由してトリガー分子の分解反応が起き、ゲルの架橋部位が取り除かれる。そして、高分子ゲルが1本1本の高分子に戻り、系全体が液状化する。(図3)つまり、発光とゲルの崩壊という2つの方法によりクロロホルムを検出することができる。一方、塩化メチレンでは、発光し、さらにゲルは崩壊しない。

光分解反応の様子

図3. 光分解反応の様子

今後の展開

これまでに知られている様々な蛍光色素の中に、光トリガー分子の考え方を適用できる分子が多数想定される。今後は、それらを用いて、簡便な分析が困難な物質の検出法を開発していく。

論文情報

掲載誌 :
Macromolecules 2017, 50, 3544–3556.
論文タイトル :
Smart Network Polymers with Bis(piperidyl)naphthalene Cross-Linkers: Selective Fluorescence Quenching and Photodegradation in the Presence of Trichloromethyl-Containing Chloroalkanes
著者 :
Shunsuke Sasaki, Yoshiyuki Sugita, Masatoshi Tokita, Tomoyoshi Suenobu, Osamu Ishitani, Gen-ichi Konishi
DOI :

参考論文

[参考論文1] Shunsuke Sasaki, Satoshi Suzuki, W. M. C. Sameera, Kazunobu Igawa, Keiji Morokuma, Gen-ichi Konishi, J. Am. Chem. Soc. 2016, 138, 8194–8206. [DOI: 10.1021/jacs.6b03749outer]
[参考論文2] S. Sasaki, K. Igawa, G. Konishi, J. Mater. Chem. C 2015, 3, 5940-5950. [DOI: 10.1039/C5TC00946Douter]

物質理工学院

物質理工学院 ―理学系と工学系、2つの分野を包括―
2016年4月に発足した物質理工学院について紹介します。

物質理工学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

東京工業大学 物質理工学院 応用化学系
准教授 小西玄一(こにし げんいち)

E-mail : gkonishi@polymer.titech.ac.jp
Tel : 03-5734-2321 / Fax : 03-5734-2888

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

世界初!受精卵のエピゲノム編集に成功 細胞分化制御やDNA組換えを伴わない遺伝子治療などへの応用に期待

$
0
0

近畿大学 生物理工学部(和歌山県紀の川市)遺伝子工学科 准教授の山縣一夫、北里大学 メディカルセンター(埼玉県北本市)研究部門 上級研究員の山﨑大賀、本学 科学技術創成研究院 教授の木村宏らの研究グループは、近年話題のゲノム編集[用語1]と呼ばれる技術に着目し、動物の発生に影響を与える「DNAメチル化[用語2]」を、細菌由来の酵素遺伝子を利用してマウス受精卵に“書き込む”ことに世界で初めて成功しました。本研究成果によって、効率的な生殖細胞作製や遺伝子治療に新たな道が開かれることが期待されます。

本件に関する論文が、2017年5月19日(金)午前3時(日本時間)に米国のオンライン学術誌『PLOS ONE』で公開されました。

ポイント

  • ゲノム編集と細菌由来の酵素遺伝子を利用してDNAメチル化情報を操作する「エピゲノム[用語3]編集技術」を開発
  • 「エピゲノム編集技術」によりマウス受精卵にDNAメチル化を“書き込む”ことに成功
  • 将来的に細胞分化の制御や配列を書き換えない遺伝子治療などに応用できる可能性がある

概要

私たちの身体を構成する細胞はすべて同じ遺伝情報(ゲノム)を核内に持っています。同じ遺伝情報からさまざまな種類の組織や細胞が作られるのは、それぞれの細胞にとって必要な遺伝子だけが使われ、不必要な遺伝子は使われないからです。遺伝情報(ゲノム)を設計図とすれば、部品の採用不採用を記した付箋をエピゲノムといい、設計図をもとに付箋の情報を集約して作った完成品が細胞となります。

エピゲノムは、後天的遺伝情報と呼ばれ、DNAに生じる目印のようなものです。エピゲノムの一つがDNAメチル化であり、正常な個体が発生するために重要な役割を果たすことが知られています。

本研究では、最近話題のゲノム編集技術と細菌由来の酵素遺伝子を利用して、マウス受精卵にDNAメチル化情報を書き込むことに世界で初めて成功し、受精卵にDNAメチル化を効率的に導入することが可能であることを示しました。本研究で開発された技術は、これまで不明だった染色体の機能未知領域(ぺリセントロメア)におけるDNAメチル化の果たす役割を解析する一助となる技術として期待されます。

詳細

研究グループはゲノム編集と呼ばれる技術に着目し、ゲノム編集で用いられているTALENおよびCRISPR/Cas9など任意のDNA配列に対して結合することが可能なDNA結合モジュールと、スピロプラズマと呼ばれる細菌が保有するDNAメチル化酵素SssIとの融合遺伝子を作製し、マウスのペリセントロメアに存在するDNA配列であるメジャーサテライトに対してDNAメチル化導入が可能か検討し(図1)、マウス受精卵(図2)およびマウスES細胞(図3)において効率的なメチル化導入が可能であることを示しました。このDNAメチル化の亢進はバイサルファイトシーケンスによる1塩基レベルの解像度だけでなく、DNAメチル化検出用の蛍光プローブを使った顕微鏡レベルでも検出可能なものであり、大規模にDNAメチル化が導入される様子をライブセルイメージングによって追跡することが可能でした。さらに、ペリセントロメアにDNAメチル化を導入したマウス受精卵の細胞分裂期における染色体分配異常を調べたところ、DNAメチル化導入した受精卵とDNAメチル化導入していない受精卵において大きな違いは認められず、着床前初期胚発生の細胞分裂機能にペリセントロメアのDNAメチル化は重要ではないことが示されました。

本研究におけるエピゲノム編集の概要

図1. 本研究におけるエピゲノム編集の概要

受精卵の分裂期染色体におけるペリセントロメアへのDNAメチル化導入

図2. 受精卵の分裂期染色体におけるペリセントロメアへのDNAメチル化導入

受精卵における分裂後期の染色体のスナップショット。「メチル化導入有り」の受精卵において分配方向の染色体末端近くにDNAメチル化の亢進が認められる。「メチル化導入無し」の染色体においても末端部分にメチル化DNAのシグナルが認められるが、これは元々細胞が持っているDNAメチル化状態を示している。
赤:メチル化DNA、緑:染色体、矢印:染色体分配方向、スケールバー:20μm

DNAメチル化酵素欠損マウスES細胞内でのペリセントロメアへのDNAメチル化導入

図3. DNAメチル化酵素欠損マウスES細胞内でのペリセントロメアへのDNAメチル化導入

「メチル化導入有り」の細胞では、核内のセントロメア近傍においてメチル化DNAのシグナルの亢進が認められる(矢印)。一方で、「メチル化導入無し」の細胞ではメチル化DNAのシグナルは核内でほぼ均一のシグナルとなる(核小体にシグナルが集積する)。
赤:メチル化DNA、緑:セントロメア、青:核、スケールバー:20μm

従来のエピゲノム編集で使用されてきた哺乳動物由来のDNAメチル化酵素は、協調して働く分子を必要としますが、本研究で作製された細菌由来の人工酵素はそれ単独で機能するため、他の生体作用の影響を受けずに安定したDNAメチル化導入効果が期待されます。

なお、本研究は文部科学省科学研究費補助金、新学術領域研究「動的クロマチン構造と機能」(代表:胡桃坂仁志 早稲田大学教授)の支援のもとで行いました。

研究の背景

近年、ゲノム編集技術は大きな広がりを見せています。遺伝子組換え動物を作製する際には、受精卵の中でゲノム編集する方法が一般的です。海外では、ヒト受精卵でゲノム編集を行ったという報告がなされており、新たな遺伝子治療法としての有効性に注目が集まるなかで、その倫理基準などについては多くの議論を呼んでいます。

一方、ゲノム編集技術を応用して特定遺伝子領域のDNAメチル化状態を操作する「エピゲノム編集」が、基礎研究レベルで徐々に報告されはじめています。これは、例えば遺伝情報の読み出しに必要な目印を変える技術であり、遺伝子配列そのものを改変するわけではないので、倫理的問題を解決する可能性があります。これまでは培養細胞などで実験されていましたが、本研究では受精卵を用いたエピゲノム編集について検討を行いました。

今後の展開

マウス生殖細胞のセントロメア(細胞分裂に必須な染色体配列)には、大規模なDNA脱メチル化が生じていることが報告されています。本研究成果によって、マウス受精卵にDNAメチル化を効率的に導入することが可能となるため、生殖細胞の発生・分化に関する研究に応用できるものと考えます。また、複数のがん細胞においても生殖細胞と同様にセントロメアのDNA脱メチル化が大規模に生じていることが報告されており、がんに特徴的なゲノム不安定性との相関性が指摘されています。本研究によるDNAメチル化操作によって、がん細胞におけるゲノム不安定性とDNA低メチル化状態との因果関係を研究することが可能となり、新たながん研究の解析ツールとなることが期待されます。

また、本研究で使用したDNA結合モジュールは任意のゲノム領域に設計できることから、ペリセントロメア以外のさまざまなゲノム部位に対してDNAメチル化の導入を行うことが可能となります。遺伝子破壊を伴わずに遺伝子の発現抑制を行うことが可能であることから、がん遺伝子をはじめとする疾患原因遺伝子の発現抑制など、ゲノムを書き換えない遺伝子治療への将来的な応用展開が期待されます。

用語説明

[用語1] ゲノム編集 : 特定の遺伝子部位に結合するDNA結合モジュールとDNA切断活性をもつタンパク質の働きによって部位特異的な遺伝子破壊や書き換えを可能とする技術。遺伝子破壊動物の効率的な作製などの基礎研究分野、変異遺伝子の修復などの医療分野においても応用可能であることから、近年大きな注目を集めている。

[用語2] DNAメチル化 : 設計図(ゲノム)に書かれているDNAの4種類の文字(アデニン、チミン、グアニン、シトシン)のうち主にシトシンに付加される目印のことを指す。シトシンがメチル化されると遺伝子を「使わない」、メチル化が外れると遺伝子を「使う」というはたらきがある。

[用語3] エピゲノム : 後天的遺伝情報と呼ばれ、体細胞分裂後にも継承されるDNA塩基配列以外の情報の総称。主にDNAメチル化やヒストンの化学修飾などがよく知られており、これらの組み合わせが遺伝子の発現と抑制に重要な役割を果たしている。

論文情報

掲載誌 :
米国のオンライン学術誌 PLOS ONE (インパクトファクター:3.057 2015)
論文タイトル :
Targeted DNA Methylation in Pericentromeres with Genome Editing-Based Artificial DNA Methyltransferase.(ゲノム編集技術を応用したペリセントロメアへの人為的・配列特異的DNAメチル化誘導)
著者 :
Taiga Yamazaki, Yu Hatano, Tetsuya Handa, Sakiko Kato, Kensuke Hoida, Rui Yamamura, Takashi Fukuyama, Takayuki Uematsu, Noritada Kobayashi, Hiroshi Kimura, Kazuo Yamagata
DOI :

取材申し込み先

近畿大学 生物理工学部

担当 : 井村・小川・神崎・石井

E-mail : bost-pr@waka.kindai.ac.jp

Tel : 0736-77-3888

北里大学メディカルセンター・研究部門

担当 : 山﨑 大賀(上級研究員)

E-mail : tyamazak@insti.kitasato-u.ac.jp

Tel : 048-593-1212(代表)

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp

Tel : 03-5734-2975 / Fax : 03-5734-3661

東京工業大学とNEC、AIで悪条件下の視認性を格段に向上する「マルチモーダル画像融合技術」を共同開発

$
0
0

東京工業大学とNEC、AIで悪条件下の視認性を格段に向上する「マルチモーダル画像融合技術」を共同開発
―可視光と非可視光の画像を自動で合成―

国立大学法人東京工業大学 工学院 奥富正敏教授、田中正行特定准教授らの研究グループ(以下、東京工業大学)とNECは、一般カメラで撮影した可視光画像と、熱をとらえるサーモカメラなどで撮影した非可視光画像を、AIを用いて自動的かつ効果的に合成し、それぞれの画像単独では捉えにくかった対象物・状況の視認性を格段に高める「マルチモーダル※1画像融合技術」を共同開発しました。

本技術により、瞬時の視認が必要となる様々な分野で、悪条件下でも正しい状況判断が可能になります。例えば、夜間や濃霧などの悪天候下でも活用可能な施設監視、対向車の眩しいヘッドライトや暗闇による死角があっても運用できる自動運転支援、建物のひび割れなど表面だけでなく内部の異常まで検査可能にするインフラ点検などです。

従来、異なる種類のカメラの画像を合成するには、専門家による手動での複雑な変換作業が必要でした。本技術は、それぞれのカメラから得られた画像をAIによって、効果的かつ自動的に合成することでこの手作業を不要にします。さらに、可視光画像と非可視光画像のそれぞれの長所を積極的に活用することで、従来は視覚化が困難だったシーンでも高い視認性が得られます。

東京工業大学とNECは、今後も産学連携の仕組みを通じて、さまざまな社会インフラを安全・安心に運用するセーフティ事業の鍵となる画像処理ならびにAI関連技術の研究開発を進めていきます。

背景

近年、画像センサの技術的な進化や低コスト化を背景に、熱を捉えるサーモカメラや物体の内部を捉えるX線・テラヘルツ波・ミリ波のカメラなどの非可視光カメラを活用し、夜間や濃霧などの悪天候、または逆光や遮蔽などの悪条件下でも、監視や診断を行う用途が広まりつつあります。しかし、これら非可視光カメラは、可視光に比べ解像度や画質が低く、視認性が悪いため、可視光カメラを併設し、両方の画像を見比べながら監視や診断を行う必要があり、素早く正確に対象物や状況を判断することが困難でした。この解決には、二種類の画像を一つに合成することが有効な手段のひとつですが、従来は、カメラの種類や撮影環境に精通した専門家が手動により、それぞれの画像から合成に適した場所を抽出し、白とびや黒潰れ、ノイズ強調などの画像破たんが生じないように注意を払いながら、複雑な画像合成作業を行う必要がありました。さらに、非可視光画像に含まれる、異常や危険物の有無を判断する手がかりとなるわずかな特徴が、合成により失われる点も課題でした。

東京工業大学とNECは、専門家の変換ノウハウを学習したAIを用いて、可視光カメラと非可視光カメラの画像を自動的かつ効果的に統合し、対象物・状況の視認性を格段に高め、劣悪な環境でも素早く異常や危険物の有無の判断を可能とする「マルチモーダル画像融合技術」を共同開発しました。

(a)可視画像
(a)可視画像

(b)遠赤外画像
(b)遠赤外画像

(c)単純な合成
(c)単純な合成

(d)今回の独自手法
(d)今回の独自手法

図1. 本技術における適用例※2

新技術の特長

  • 複数の画像から視認性が高い部分をAIが自動的に選択し、かつ非可視光画像に含まれるわずかな特徴を強調しながら合成することで、従来の限界を打ち破る高い視認性を実現
  • サーモカメラやテラヘルツカメラといったカメラの種類や、環境の特性(明るさ、光線の方向、障害物の有無など)に応じて、AIが画像内の各部分の視認性の度合いを評価、各画像から最適な領域のみを自動的に抽出
  • さらに、非可視カメラの画像中の、異常や危険物などに関するわずかな特徴をAIが解析し、白とびや黒潰れなどの画像破たんが生じない、適切な強調の度合いを判断しながら、従来にない高い視認性を持つマルチモーダル(可視―非可視)な融合画像を自動的に生成

東京工業大学とNECは、本技術を6月7日(水)から9日(金)まで、パシフィコ横浜(横浜市西区)にて開催される「第23回画像センシングシンポジウム 2017(主催:画像センシング技術研究会)」において、6月7日に発表する予定です。

※1
マルチモーダル: 複数の様式、モード。本発表では、可視カメラの画像と赤外線カメラのような非可視カメラの画像など、異なる画像様式のこと。
※2
革新的研究開発推進プログラム(ImPACT)タフ・ロボティクス・チャレンジにおける悪環境模擬装置について許諾を得て使用。

工学院

工学院 ―新たな産業と文明を拓く学問―
2016年4月に発足した工学院について紹介します。

工学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

NEC 研究企画本部 研究プロモーショングループ

東京工業大学 工学院 システム制御系
教授 奥富正敏

E-mail : mxo@ctrl.titech.ac.jp
Tel : 03-5734-3472

取材申し込み先

NEC コーポレートコミュニケーション部
中村・増田

E-mail : a-nakamura@dg.jp.nec.com
Tel : 03-3798-6511

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661


本学発の「温度無依存水晶振動子」がIEEEマイルストーンに認定

$
0
0

古賀逸策(1899~1982)
古賀逸策(1899~1982)

本学で生まれた水晶振動子は、小型化されつつ今やあらゆる電子機器に組み込まれ、ディジタル社会を支えています。古賀逸策名誉教授(当時、助教授)らの努力が実り、温度に左右されない水晶振動子が実現したのは今から85年程前の1932~33年にかけてでした。この度、この「温度無依存水晶振動子」が、社会や産業に多大な貢献をした歴史的な業績として、IEEEマイルストーン(Milestone)に認定され、記念銘板(プラーク)が贈呈されました。IEEE(アイ・トリプル・イー: The Institute of Electrical and Electronics Engineers, Inc.)は、米国に本部を持つ電気電子分野の世界最大の専門家組織で、IEEEマイルストーンは、IEEEが電気・電子技術やその関連分野における歴史的偉業に対して認定する賞です。認定されるためには、25年以上に渡って世の中で高く評価を受けてきたという実績が必要です。本学にとっては、フェライトに続き2つ目のマイルストーンとなります。これを記念して、3月6日に記念式典と記念講演会、4月21日に除幕式が行われました。

古賀グループの業績概要

認定された業績

水晶振動子の開発につながる圧電効果の発見は、キュリー兄弟(弟は放射線の研究でキュリー夫妻としても有名)らによってなされましたが、当時使用されていた水晶板では、電圧をかけた時の振動数は、温度に大きく依存したために、長い間、応用の障壁となっていました。この壁を取り除き、今日広く使用されている水晶デバイスの開発を可能にしたのが古賀グループで、ある特定の角度で水晶の結晶から水晶板を切り出すと温度に依存しない振動子が得られることを、理論的アプローチによって予測し、実験で確認しました(1932~1933)。キュリー兄弟の研究から半世紀近くを経て、ようやく恒温槽を必要としない水晶振動子が誕生し、広範な製品への応用が可能となりました。

社会や産業への貢献

水晶と水晶デバイス搭載製品(出典:QIAJ,「水晶デバイスの解説と応用」)
水晶と水晶デバイス搭載製品(出典:QIAJ,「水晶デバイスの解説と応用」)

水晶振動子は、今日では時計をはじめ、スマートフォンやパソコンなどの情報通信機器、薄型テレビやブルーレイディスクなどのオーディオ機器、カーエレクトロニクスなどの電子機器、移動体通信・光通信網などのインフラシステムなどに組み込まれ、私たちの生活になくてはならない電子部品としてディジタル情報社会を支えています。

IEEE マイルストーン記念式典

3月6日、大岡山キャンパス百年記念館3階のフェライト記念会議室において、IEEEマイルストーン記念式典が行われ、本学、IEEE、古賀名誉教授の流れをくむ方々、及び水晶デバイス工業界の方々があわせて74名出席されました。

贈呈式では、IEEEのカレン・バートルソン会長より、IEEEマイルストーン記念銘板が三島良直学長に贈呈されました。

  • Bartleson会長からPlaqueを受け取る三島学長

    Bartleson会長からPlaqueを受け取る三島学長

  • 記念銘板

    記念銘板

引き続き、同館4階ラウンジにて開催された記念祝賀会では、IEEE Japan Council(日本支部) Chairの津田俊隆氏、文部科学省研究振興局長の関靖直氏をはじめ、日本水晶デバイス工業会会長・日本電波工業株式会社代表取締役会長兼社長の竹内敏晃氏、KDDI株式会社代表取締役社長の田中孝司氏(代読:理事・技術開発本部長の宇佐見正士氏)よりそれぞれ祝辞が述べられた後、蔵前工業会副理事長・NHK元会長の橋本元一氏の乾杯のご発声により、祝賀会が開催され、参加者は和やかに歓談しました。

記念講演会「水晶振動子のIEEEマイルストーンと情報通信の発展」

講演会の様子
講演会の様子

記念講演会は、大岡山西講義棟1(レクチャーシアター)で行われました。最初に、IEEE Japan Council History Committee Chairの白川功氏によって「IEEE Milestoneの概要」が説明された後、本学名誉教授の伊賀健一前学長が「古賀逸策の水晶振動子とマイルストーン」と題し、水晶振動子開発の歴史と、古賀グループが如何にしてゼロ温度係数の水晶振動子に辿り着いたかを解説しました。休憩の後、本学栄誉教授の末松安晴元学長が「水晶から光通信まで―東工大における通信の研究」と題し、古賀名誉教授の思い出やその流れをくむ本学の研究業績、さらには末松グループの大容量長距離光ファイバ通信用の半導体レーザの研究や大岡山‐長津田キャンパス間情報伝達(光通信)システム設置のいきさつなどを紹介しました。次に、日本電気株式会社代表取締役会長の遠藤信博氏が「AI・IoT・ビッグデータ、豊かな人間社会に向けて」と題して、情報通信の最先端技術について、豊富な事例を交えて、今後、AIによって“仕事”や“社会”のあり様は大きく変化するという趣旨の講演を行いました。最後に、内閣府総合科学技術・イノベーション会議議員の久間和生氏が「我が国の科学技術イノベーション戦略」と題して、古賀グループの仕事をイノベーションの観点から、ディジタル革命の原点・立役者であると分析したうえで、現在久間氏が国家プロジェクトとして取り組んでいる「超スマート社会」(Society 5.0)の実現に向けた我が国の技術開発の取り組みについて紹介しました。講演終了後には質疑応答も活発に行われ、出席者202名のもと盛況の内に終了となりました。

記念銘板の設置場所と除幕式

贈呈された記念銘板は、大岡山キャンパス百年記念館2階の206号室(電気・光通信展示室)及びすずかけ台キャンパスに各1つずつ展示されています。すずかけ台では通学路の脇に台座付きで設置されています。水晶振動子の研究をしていた頃の古賀逸策研究室(電気工学科)は大岡山の本館の時計台(5~6階)にありました。後に古賀名誉教授は電気科学研究所(旧精密工学研究所の前身の一つ)を兼任し、そこのスタッフだった福与人八・大浦宣徳博士らと共に水晶振動子の研究を発展させました。昨年度の改組で、精密工学研究所は未来産業技術研究所に生まれ変わりましたが、「産業の塩」といわれるほど重要な水晶振動子の開発舞台だったことを記念して、研究所の現在の所在地にも銘板が設置されることになり、4月21日に除幕式が行われました。

  • 除幕式を終えた後の記念写真

    除幕式を終えた後の記念写真

  • 古賀逸策研究室があった本館の時計塔

    古賀逸策研究室があった本館の時計塔

取材申し込み先

広報・社会連携本部 広報・地域連携部門

E-mail : pr@jim.titech.ac.jp
Tel : 03-5734-2975

6月7日9:30 PDFを追加しました。
6月7日15:30 PDFの名称を変更しました。

トポロジカル絶縁体を強磁性にする新たな方法を発見 ―量子異常ホール効果を利用したデバイス開発へ進展―

$
0
0

要点

  • トポロジカル絶縁体に強磁性層を埋め込むことに成功
  • 室温でも強磁性状態の維持を実証
  • 高温での量子異常ホール効果の実現、デバイス開発に新たな道

概要

東京工業大学 理学院 物理学系の平原徹准教授、東京大学 物性研究所の白澤徹郎助教(現 産業技術総合研究所主任研究員)、同大大学院理学系研究科の長谷川修司教授、分子科学研究所の田中清尚准教授、木村真一准教授(現 大阪大学教授)、横山利彦教授、広島大学 放射光科学研究センターの奥田太一教授、ロシア・スペインの理論グループらは共同で、トポロジカル絶縁体の表面近傍に規則的な強磁性層を埋め込むことに成功し、さらに室温であっても強磁性状態であることを実証した。

トポロジカル絶縁体とは、物質内部は絶縁体で電流を通さないが、表面には金属状態が存在し、電流を流すことのできる新しい絶縁体である。このトポロジカル絶縁体にさらに磁石の性質である強磁性[用語1]を導入することで、輸送特性として量子異常ホール効果[用語2]が実現する。しかしこれまでのやり方では、量子異常ホール効果が実際に観測される温度が、最高でも-271 ℃と低い温度にとどまっていた。

今回、トポロジカル絶縁体であるBi2Se3薄膜上にさらにSeと磁性元素Mnを蒸着したところ、表面近傍にMnとSeが潜り込み、MnBi2Se4/Bi2Se3という構造が形成された。そして電気的および磁化特性測定によりこの物質が室温でも強磁性状態であることが明らかになった。この成果によって量子異常ホール効果がこれまでより高温で実現され、デバイス応用につながることが期待できる。

本成果は、2017年5月26日に、米国化学会誌「Nano Letters(ナノレターズ)」にJust Acceptedでオンライン掲載された。

研究の背景

物質をトポロジー[用語3]によって分類する考え方は2016年のノーベル物理学賞の受賞対象であり、現在盛んに研究されている。その代表例がトポロジカル絶縁体であり、物質内部では絶縁体で電流を通さないが、表面には金属状態が存在し、電流を流すことのできる新しい絶縁体である。その表面状態はトポロジーによって保護された、質量のないスピン偏極ディラック電子[用語4]になっている(図1(a))。このトポロジカル絶縁体に強磁性の性質を導入すると、金属的であった表面状態にギャップが開き、質量のあるスピン偏極ディラック電子へと変化する(図1(b))。これは新たなトポロジカル相であり、電子の輸送特性を測定すると量子異常ホール効果が観測される。

スピン偏極した質量のないディラック電子(a)およびギャップの開いたスピン偏極ディラック電子(b)。赤と青は異なるスピンの向きを持っていることを表している。

図1. スピン偏極した質量のないディラック電子(a)およびギャップの開いたスピン偏極ディラック電子(b)。
赤と青は異なるスピンの向きを持っていることを表している。

これまで強磁性トポロジカル絶縁体は、トポロジカル絶縁体を成長させる際に磁性不純物を無秩序に添加する方法で作製されてきた(図2(a))。しかしこの方法では試料の不均一性によりディラックコーンのギャップが不均一で小さくなり、また強磁性の性質を示す温度は室温以下に限られる。これらの理由により、実際に量子異常ホール効果が観測される温度は最高でも-271 ℃と非常に低い温度にとどまっていた。

これまで作製・研究されてきた磁性トポロジカル絶縁体(a)および本研究で発見された磁性トポロジカル絶縁体ヘテロ構造。

図2. これまで作製・研究されてきた磁性トポロジカル絶縁体(a)および本研究で発見された磁性トポロジカル絶縁体ヘテロ構造。

研究成果

今回、東京工業大学、東京大学、分子科学研究所、広島大学の研究グループは高品質のビスマスセレン(Bi2Se3)薄膜を作成し、その上にさらにSeと磁性元素マンガン(Mn)を蒸着した。電子回折を用いた構造解析の結果、上に付けたはずのMnとSeがBi2Se3の表面近傍に潜り込みMnBi2Se4/Bi2Se3という秩序だったヘテロ構造[用語5]が形成されることが分かった(図2(b)、図3(a))。分子科学研究所の極端紫外光研究施設UVSORと広島大学放射光科学研究センターHiSORでスピンおよび角度分解光電子分光[用語6]により、この物質の電気的特性を測定した。その結果、このヘテロ構造の表面状態は85 meVの均一なギャップが開いた、スピン偏極したディラック電子になっていた(図3(b))。またUVSORにおけるX線磁気円二色性(XMCD)[用語7]および超伝導量子磁束干渉計(SQUID)[用語8]を用いた磁気特性測定により、このヘテロ構造が室温まで強磁性状態を維持することも明らかになった。これらの結果はロシア・スペインのグループが行った第一原理計算によっても支持された。

構造解析によって決定されたヘテロ構造の原子構造(a)およびその表面ディラック電子のバンド構造。

図3. 構造解析によって決定されたヘテロ構造の原子構造(a)およびその表面ディラック電子のバンド構造。

今後の展望

今回の研究は、トポロジカル絶縁体に強磁性の性質を付与する新たな方法を発見したものである。この方法は、磁性元素が無秩序に不純物として添加されているのではなく、秩序だった強磁性層として表面近傍に埋め込まれている点で従来のやり方と大きく異なる。その上、磁性元素の分布の均一性と強磁性を示す温度という点で大きな利点がある。このヘテロ構造を用いればこれまで-271 ℃までしか実現されていない量子異常ホール効果をより高温で実現できる可能性がある。さらに、そのトポロジカルな性質を生かした極薄ナノデバイス開発の応用研究が加速することが期待できる。

用語説明

[用語1] 強磁性 : 隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを持つ物質の磁性を指す。物質は外部磁場が無くても自発磁化を持つことができ、いわゆる磁石の性質のことである。

[用語2] 量子異常ホール効果 : 磁場中を電子が動くと、その動きが曲げられる。固体物質ではこの現象をホール効果と呼び、電流にも磁場にも垂直な方向に発生する電圧をホール電圧と言う。物質が強磁性体の場合、磁性体自身が持っている磁化が外部磁場の代わりになることで無磁場でもホール効果が発生する。この現象を異常ホール効果と呼ぶ。また、異常ホール効果によって生じる抵抗が量子化抵抗値に等しくなる現象を、量子異常ホール効果と呼ぶ。この状態では無散逸に電流が流れるので省エネデバイスに応用が期待されている。

[用語3] トポロジー : トポロジーとは、数学の一分野であり、何らかの形を連続変形(伸ばしたり曲げたりすることはするが切ったり貼ったりはしないこと)しても保たれる性質に焦点を当てたものである。例えば、ドーナツとマグカップは穴が一つあるので連続変形によって移り変わることができ同じトポロジーを持つといえる。一方、湯呑み茶碗には穴が開いておらず、異なるトポロジー状態である。

[用語4] ディラック電子 : 通常の電子と異なり、英国の物理学者ディラックが1928年に発表した相対論的量子力学に従う電子のこと。トポロジカル絶縁体の表面ではさらにこのディラック電子がスピン偏極している。

[用語5] ヘテロ構造 : 組成元素が異なる2つの固体を接合して形成される構造のこと。

[用語6] スピンおよび角度分解光電子分光 : 固体に光を照射すると物質の表面から電子が放出される。放出された電子は光電子と呼ばれ、その光電子のエネルギーや運動量、スピン状態を測定すると、物質がどのような電子・スピン状態をとっているかが分かる。

[用語7] X線磁気円二色性(XMCD) : 物質に左円偏光と右円偏光の2つの異なる偏光のX線を照射したときの、吸収スペクトルの差スペクトルのこと。XMCDスペクトルを解析することで、原子のスピンや軌道磁気モーメントなどの磁気的特性がわかる。

[用語8] 超伝導量子磁束干渉計(SQUID) : 弱く結合した2つの超伝導体に流れる電流を利用した、極めて弱い磁場の検出に用いられる非常に感度の高い磁気センサーの一種。

論文情報

掲載誌 :
Nano Letters
論文タイトル :
Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer
著者 :
Toru Hirahara, Sergey V. Eremeev, Tetsuroh Shirasawa, Yuma Okuyama, Takayuki Kubo, Ryosuke Nakanishi, Ryota Akiyama, Akari Takayama, Tetsuya Hajiri, Shin-ichiro Ideta, Masaharu Matsunami, Kazuki Sumida, Koji Miyamoto, Yasumasa Takagi, Kiyohisa Tanaka, Taichi Okuda, Toshihiko Yokoyama, Shin-ichi Kimura, Shuji Hasegawa, and Evgueni V. Chulkov
DOI :

理学院

理学院 ―真理を探究し知を想像する―
2016年4月に発足した理学院について紹介します。

理学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

東京工業大学 理学院 物理学系

平原徹 准教授

E-mail : hirahara@phys.titech.ac.jp
Tel / Fax : 03-5734-2365

東京大学大学院 理学系研究科 物理学専攻

長谷川修司 教授

E-mail : shuji@surface.phys.s.u-tokyo.ac.jp
Tel / Fax : 03-5841-4167

分子科学研究所 極端紫外光研究施設

田中清尚 准教授

E-mail : k-tanaka@ims.ac.jp
Tel : 0564-55-7202 / Fax : 0564-54-7079

分子科学研究所 物質分子科学研究領域

横山利彦 教授

E-mail : yokoyama@ims.ac.jp
Tel : 0564-54-7345 / Fax : 0564-55-7448

広島大学 放射光科学研究センター

奥田太一 教授

E-mail : okudat@hiroshima-u.ac.jp
Tel : 082-424-6996 / Fax : 982-424-6294

取材申込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

東京大学 物性研究所 広報室

E-mail : press@issp.u-tokyo.ac.jp
Tel : 04-7136-3207

東京大学大学院 理学系研究科・理学部

武田加奈子 特任専門職員、谷合純子 学術支援職員、大越慎一 教授・広報室長

E-mail : kouhou@adm.s.u-tokyo.ac.jp
Tel : 03-5841-0654

分子科学研究所 広報

E-mail : kouhou@ims.ac.jp
Tel / Fax : 0564-55-7262

広島大学 財務・総務室広報部 広報グループ

E-mail : koho@office.hiroshima-u.ac.jp
Tel : 082-424-6762 / Fax : 082-424-6040

新開発の光触媒でCO2を高効率に再資源化―緑色植物の光合成を人工系で実現―

$
0
0

要点

  • 資源的制約の無い炭素と窒素を主要元素とした新しい光触媒を開発
  • 太陽光の主成分をエネルギー源として、CO2を有用化学物質へと変換
  • 世界最高の触媒耐久性とCO2還元選択率を達成

概要

東京工業大学 理学院 化学系の前田和彦准教授、石谷治教授、栗木亮大学院生・日本学術振興会特別研究員らの研究グループは、ルテニウム(Ru)複核錯体と窒化炭素からなる融合光触媒が、可視光照射下での二酸化炭素(CO2)のギ酸[用語1]への還元的変換反応に対して特異的に高い活性を示すことを発見した。実験条件を最適化した結果、これまでに報告されていたものよりも触媒耐久性を示すターンオーバー数[用語2]は3倍の2000にまで向上し、CO2還元の選択率[用語3]も75%から最大で99%まで大幅に改善された。

これにより、資源的制約とは無縁な炭素と窒素からなる材料を使い、かつ太陽光をエネルギー源として、地球温暖化の主因となっているCO2を常温常圧下で有用な化学物質に変換できる可能性が見えてきた。

研究成果は4月7日にドイツ化学会誌『Angewandte Chemie, International Edition (アンゲヴァンテ・ケミー・インターナショナル・エディション)』オンライン版に掲載された。

研究の背景

金属錯体や半導体を光触媒としたCO2還元は、ギ酸や一酸化炭素といった有用物質を常温常圧下で製造できる反応として注目され、30年以上も前から国内外で精力的に研究されている。

前田准教授らはこれまでに、有機高分子半導体である窒化炭素(C3N4)とRu錯体を融合したハイブリッド材料を光触媒とすることで、太陽光の主成分である可視光照射下、常温常圧下でCO2を還元することに成功していた。だが、耐久性と選択率の向上が課題となっていた。特に、この複合光触媒の高効率化には、C3N4からRu錯体への電子(e)移動の促進が必要となっていた。

研究成果

前田准教授らは、尿素を熱分解して得られるシート状C3N4が、ホスフォン酸基を吸着部位としてもつRu錯体を強固に吸着できることを発見した。これにより、C3N4からRu錯体への効率的な電子移動が実現し、その結果としてCO2光還元反応の高効率化に成功した(図1)。

シート状C3N4とRu複核錯体を組み合わせた複合光触媒によるCO2還元

図1. シート状C3N4とRu複核錯体を組み合わせた複合光触媒によるCO2還元

光触媒の合成条件、およびCO2光還元の反応条件を詳しく検討した結果、CO2溶解度の低い水中でも高い光触媒活性が得られることがわかった。CO2を還元してギ酸を生成する本反応のターンオーバー数は従来の660から2090に向上し、75%にとどまっていたCO2還元の選択率は最大で99%に達した。これらの値は、これまでに報告されてきた類似光触媒系を大きく超え、世界最高値となった。

今後の展開

今回の研究成果は、化学結合形成に利用可能な表面官能基をほとんどもたないC3N4の表面が、特別な化学処理を経ることなく有用な化学反応系構築に利用できることを示している。本反応で得られるギ酸は、水素を貯蔵・輸送するエネルギーキャリアとして有用だが、組み合わせる錯体を変えることで、化学燃料として価値の高い一酸化炭素を高い選択率で得ることも可能になる。また、C3N4は炭素や窒素を含む安価で単純な有機物から容易に合成できる。主構成元素である炭素や窒素以外の元素を取り込むことで、よりエネルギーの小さい可視光の有効利用も可能になり、ひいては太陽光エネルギーの有効利用につながると期待される。

付記

本研究は本学技術部すずかけ台分析部門の魯大凌技術職員、大阪市立大学複合先端研究機構の吉田朋子教授、名古屋大学未来材料・システム研究所の八木伸也教授のグループとの共同で行った。

本研究の一部は、日本学術振興会・科学研究費補助金・若手研究A「窒化炭素系半導体と金属錯体を融合した二酸化炭素固定化光触媒の創出」、新学術領域研究「複合アニオン化合物の新規化学物理機能の創出」(代表:前田和彦東京工業大学准教授)、科学技術振興機構戦略的創造研究推進事業(CREST)「太陽光の化学エネルギーへの変換を可能にする分子技術の確立」(代表:石谷治東京工業大学教授)の助成を受けて行った。

用語説明

[用語1] ギ酸 : 分子式HCOOHで表されるもっとも単純なカルボン酸。適当な触媒を用いれば、水素(H2)とCO2に分解できるため、貯蔵や輸送に困難を伴う水素のキャリア(エネルギーキャリア)として注目されている。

[用語2] ターンオーバー数 : 触媒反応の活性点の数に対する生成物分子の数の割合。活性点が10個あり、生成物分子が100個生じた場合、ターンオーバー数は10となる。

[用語3] 選択率 : 化学反応におけるすべての生成物量に対する目的生成物量の割合。

論文情報

掲載誌 :
Angewandte Chemie, International Edition
論文タイトル :
Robust Binding between Carbon Nitride Nanosheets and a Binuclear Ruthenium(II) Complex Enabling Durable, Selective CO2 Reduction under Visible Light in Aqueous Solution
著者 :
Ryo Kuriki, Muneaki Yamamoto, Kimitaka Higuchi, Yuta Yamamoto,
Masato Akatsuka, Dr. Daling Lu, Prof. Dr. Shinya Yagi, Prof. Dr. Tomoko Yoshida, Prof. Dr. Osamu Ishitani, Prof. Dr. Kazuhiko Maeda
DOI :

理学院

理学院 ―真理を探究し知を想像する―
2016年4月に発足した理学院について紹介します。

理学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

東京工業大学 理学院 化学系 前田和彦 准教授

E-mail : maedak@chem.titech.ac.jp

Tel : 03-5734-2239 / Fax : 03-5734-2284

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp

Tel : 03-5734-2975 / Fax : 03-5734-3661

中村昌允特任教授が第33回北川学術賞を受賞

$
0
0

5月26日、環境・社会理工学院 技術経営専門職学位課程の中村昌允特任教授が、特定非営利活動法人安全工学会より、第33回(2017年度)北川学術賞を授与されました。

賞状を持った中村特任教授

賞状を持った中村特任教授

記念品のトロフィー
記念品のトロフィー

北川学術賞は、安全分野の学術貢献者を表彰するために1984年から設けられた賞で、毎年1~2名が受賞しています。

中村特任教授は、化学プラントの事故をはじめ、多くの事故における「技術者の判断と行動」「事故の根本原因とその是正策」について研究をまとめ、産業界の安全に寄与したことが評価されました。昨今続いた化学プラント重大事故の事故調査委員など安全に関する種々の委員会に参画すると共に、幅広い産業分野の安全人材の育成活動に従事しています。

また、中村特任教授は、企業在職時に新規開発技術のプラントの設計者として爆発事故を経験しており、事故当事者が「なぜ、そのような判断・行動したか」を、事故当事者の立場に立って考える「仮想体験手法」によって、事故の深層原因に迫る考え方を提言しています。2008年より本学イノベーションマネジメント研究科客員教授として「技術者倫理とリスク管理」、「技術者倫理」の講義を担当し、現在は、環境・社会理工学院の特任教授を務めています。

環境・社会理工学院

環境・社会理工学院 ―地域から国土に至る環境を構築―
2016年4月に発足した環境・社会理工学院について紹介します。

環境・社会理工学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

環境・社会理工学院 技術経営専門職学位課程

E-mail : tam.inv@jim.titech.ac.jp
Tel : 03-3454-8912

島津製作所精密機器分析室開設記念式典を開催

$
0
0

東工大生命理工学院は、島津製作所精密機器分析室開設記念式典を5月9日にすずかけ台キャンパスにて開催し、来賓、学内外関係者ら約60名が出席しました。

島津製作所精密機器分析室は、株式会社島津製作所から同学院に対して寄贈された、ライフサイエンス関連精密分析装置を中心とする島津製作所製分析装置を設置した共用分析室です。最先端研究の推進を始め、若手研究者や学生などの研究支援、国際共同研究や種々の企業との産学連携の推進に活用しています。また、島津製作所においては、新たに開発した機器等を利用した産学連携スペースとして、本分析室を活用する予定です。

  • 協定に署名した丸山秀三島津製作所常務執行役員(左)と安藤真理事・副学長(右)

    協定に署名した丸山秀三島津製作所常務執行役員(左)と
    安藤真理事・副学長(右)

  • 挨拶をする三島良直学長

    挨拶をする三島良直学長

記念式典に先立ち、記者説明会が行われました。

記念式典では、丸山秀三島津製作所常務執行役員、安藤真理事・副学長(研究担当)が同室の設置に関する協定に署名しました。その後、三島良直学長、三原久和生命理工学院長、丸山常務執行役員の挨拶に続き、丸山常務執行役員から寄贈分析装置の目録が三原学院長に贈呈されました。続いて、同室銘板の除幕式が執り行われました。

  • 挨拶をする三原久和生命理工学院長

    挨拶をする三原久和生命理工学院長

  • 挨拶をする丸山秀三島津製作所常務執行役員

    挨拶をする丸山秀三島津製作所常務執行役員

式典後には、分析室の見学会が開かれ、続いて行われた交流会では、安藤理事・副学長、森安里志島津製作所分析計測事業部副事業部長、大竹尚登副学長(研究企画担当)から挨拶がありました。和やかな雰囲気のなか歓談し、同室の開設を祝うとともに産学間の交流を深めました。

なお、生命理工学院とバイオ研究基盤支援総合センターによる本分析室を核とした設備共用化の取り組みは、2017年度文部科学省先端研究基盤共用促進事業(新たな共用システム導入支援プログラム)に採択されています。

  • 除幕式後の島津製作所および東京工業大学の関係者による記念撮影

    除幕式後の島津製作所および東京工業大学の関係者による記念撮影

  • 見学会の様子

    見学会の様子

生命理工学院

生命理工学院 ―複雑で多様な生命現象を解明―
2016年4月に発足した生命理工学院について紹介します。

生命理工学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

東京工業大学 生命理工学院 生命理工学系

Email: suz.sei@jim.titech.ac.jp

Tel : 045-924-5942

テラヘルツ電磁波の照射による超高速誘電体材料の新しい制御法を発見 -データを超高速処理する光電子デバイスの開発に期待-

$
0
0

要点

  • 強誘電体に代表される極性材料は、高強度レーザー光の波長を変換する素子として利用され、波長変換の効率が高い材料の合成が求められる
  • ビスマスとコバルトを含むセラミックスに1テラヘルツ帯に周波数域を持つ電磁波パルス(波長がサブミリメートルの電磁波)を照射すると、波長変換効率が5割以上増大する現象を世界で初めて発見
  • 室温かつ非接触、100フェムト秒(fs:1フェムト秒は10-15秒)以内の超高速で非線形光学材料の性能指数を向上させる新しい方法として期待

概要

東京工業大学 理学院 化学系の沖本洋一准教授、腰原伸也教授、同科学技術創成研究院 フロンティア材料研究所の東正樹教授、京都大学 高等研究院 物質-細胞統合システム拠点の廣理英基特定拠点准教授、同理学研究科の田中耕一郎教授らの研究グループは、ビスマスとコバルトを含むセラミックスにテラヘルツ光(波長がサブミリメートルの遠赤外光)を照射すれば、非線形光学特性が5割以上増強する現象を初めて発見した。一般に極性材料は、高強度レーザー光の波長を変換する素子として利用され、その性能指数をどのように増大させるかが重要な課題となっている。およそ1テラヘルツに周波数域を持つレーザパルスの照射により、室温で第二次高調波強度が5割以上増大する現象が明らかになった。これは、瞬間的な高電場印加によって極性材料の波長変換特性が大きく向上したことを示す。室温かつ非接触、超高速での新しい非線形光学材料の性能指数向上や巨大データ高速処理に必要な超高速光電子デバイス開発への応用が強く期待される。

研究成果は5月11日発行の米国科学誌『フィジカルレヴューアプライド誌(Physical Review Applied)』オンライン版に掲載された。

研究の背景

強誘電体を代表とする極性材料が果たす役割は多くの分野で重要になってきた。中でも非線形光学材料への応用は、高強度レーザーの波長を変えるために不可欠の技術であり、光機能性開発の分野で注目されている。一般に極性材料は、その反転対称性の破れた独自の結晶構造に由来する「二次の非線形感受率[用語1]」が存在し、入射した光の周波数の2倍(波長が半分)の光を発生させることができる。第二次高調波発生(SHG)[用語2]と呼ばれ、非線形光学材料の最も重要な応用例の一つである。レーザーにおける波長変換技術にも利用される。発生するSHG強度が大きい、すなわち性能指数が高い非線形光学材料の開発は重要な課題となっている。

これに加えて、高強度レーザーの照射によって物質の光学的・磁気的・電気的性質などを非熱的かつ超高速に変化できる光機能性材料を開発する研究が世界中で盛んである。この現象は「光誘起相転移[用語3]」と呼ばれ、電気的には実現不可能な応答速度で物質の屈折率や吸光度を制御する方法と考えられ注目されている。しかし、SHGに代表されるような非線形光学応答を光によって大きく変化させようという試みはこれまでは行われていない。光誘起相転移研究の知見を非線形光学材料開発に生かすためには、最先端光源を駆使した様々な極性材料における粘り強い研究が必要であった。

研究成果

東京工業大学 理学院 化学系の沖本洋一准教授らの研究グループは、同科学技術創成研究院 フロンティア材料研究所の東正樹教授、京都大学 高等研究院 物質-細胞統合システム拠点の廣理英基特定拠点准教授らの研究グループと協力し、ビスマスとコバルトからなる酸化物セラミックス結晶(BiCoO3)において、発生するSHG強度をテラヘルツレーザー光照射で5割以上増強することに成功した。

対象の物質は、ビスマスとコバルトを中に含む酸素4面体で構成されたユニットが3次元的に連なった構造を有している[図1(a)]。(これは強誘電体材料として有名なPbTiO3結晶と同型である。)ピラミッド構造を持つ4面体の頂点方向が結晶内で同一の方向を向いており、全体としてマクロな極性構造を持つ。実際、巨大な自発分極が観測されている。この結晶試料は、東京工業大学 科学技術創成研究院 フロンティア材料研究所の東正樹教授らによって合成された。

この物質では極性構造に起因する二次の非線形感受率が存在するため、SHG効果を容易に観測することができる。我々は、この試料に対し尖頭値が約1 MV/cmの電界強度を持つテラヘルツ光パルスを照射した。ポンプ―プローブ分光法[用語4]と呼ばれる測定手法を用いて、試料から発生するSHG光強度がテラヘルツ光照射にともないどのように変化するかを測定した。照射に用いた高強度テラヘルツ光パルスは、京都大学 高等研究院 物質-細胞統合システム拠点の廣理英基特定拠点准教授らによって開発されたものである。

実験の結果、試料から発生するSHG強度は、テラヘルツ光パルスの照射によって瞬時に増強することが観測された。最大電界強度0.8 MV/cmのときSHG強度は5割以上増えた[図1(b)]。これは、テラヘルツ光が結晶の歪みを引き起こし、二次の非線形感受率を増大させたために発生したものであり、試料の非線形光学応答の性能指数が劇的に増大したことを意味する。さらに、そのSHG強度変化のスピードは、照射したテラヘルツ波の波形に追随しており、1ピコ秒(1兆分の1秒)以内に変化し元の状態に戻ることがわかった[図1(b)]。このような巨大、かつ高速の非線形光学応答の変化はこれまで全く見られなかったものであり、新しい非線型光学材料の性能指数を制御する手法を示すものである。

(a)極性構造を持つ酸化物セラミックスBiCoO<sub>3</sub>の結晶構造の模式図。(b)テラヘルツ電磁波を照射したときの試料から発生する第二次高調波(SHG)発生強度の増強の様子。

図1.(a)極性構造を持つ酸化物セラミックスBiCoO3の結晶構造の模式図。
(b)テラヘルツ電磁波を照射したときの試料から発生する第二次高調波(SHG)発生強度の増強の様子。

今後の展開

以上の研究結果から、テラヘルツレーザー光が極性材料の波長変換特性を大きく向上させる可能性が明らかになった。室温かつ非接触での新しい非線形光学材料の性能指数アップの技術やテラヘルツ電磁波によって制御される超高速データ処理のための新たな超高速光電子デバイス開発につながることが期待される。また、強誘電材料が持つ他の有用な性質(アクチュエーターやキャパシタなど)もテラヘルツ光の照射によってその機能を大幅アップできる可能性を強く示唆する。

本研究は、文部科学省科学研究費補助金(15H02103,16K05397, 16H04000)、科学技術振興機構 戦略的創造研究推進事業 個人型研究(さきがけ)の一環として行ったものである。

用語説明

[用語1] 非線形感受率 : 光が物質に入射すると、通常は反射や透過のように光の電場に比例した応答が観測されるが、レーザー光などの強度が強い光を入射すると、その電場の2乗や3乗に比例した応答が出現することがある。その時の応答の係数を非線型感受率と呼ぶ。

[用語2] 第二次高調波発生(SHG) : 二次の非線形感受率の存在により、入射光の周波数の2倍の光が発生する現象。強誘電体などの、結晶の反転対称性がない試料で観測される。

[用語3] 光誘起相転移 : 光を物質に入射することで、物質の相が変化する現象。近年の高強度・高速レーザー光研究の発展により、様々な物質群で非熱的な(単純な温度上昇では得られない)電子相を光で引き出すことに成功した実験結果が報告されている。

[用語4] ポンプ―プローブ分光法 : ポンプ光(励起光)を物質に照射することで起こる電子状態や構造の変化を計測するため、続けてプローブ光(計測光)を物質に照射してその反射率や透過率の変化を調べる計測手法。ポンプ光とプローブ光の間の時間間隔を変えることによって、物質の特性が変化していく様子をスナップショットのように刻々と追跡する実験手法。

論文情報

掲載誌 :
Physical Review Applied
論文タイトル :
Ultrafast Control of the Polarity of BiCoO3 by Orbital Excitation as Investigated by Femtosecond Spectroscopy
著者 :
Y. Okimoto, S. Naruse, R. Fukaya, T. Ishikawa, S. Koshihara, K. Oka, M. Azuma, K. Tanaka, and H. Hirori
DOI :

理学院

理学院 ―真理を探究し知を想像する―
2016年4月に発足した理学院について紹介します。

理学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

東京工業大学 理学院 化学系

沖本洋一 准教授

E-mail : okimoto.y.aa@m.titech.ac.jp
Tel : 03-5734-3895 / Fax : 03-5734-3895

東京工業大学 科学技術創成研究院 フロンティア材料研究所

東正樹 教授

E-mail : mazuma@msl.titech.ac.jp
Tel : 045-924-5315 / Fax : 045-924-5318

京都大学 高等研究院 物質-細胞統合システム拠点

廣理英基 特定拠点准教授

E-mail : hirori@icems.kyoto-u.ac.jp
Tel : 075-753-9854 / Fax : 075-753-9854

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

京都大学 高等研究院 国際企画・広報掛

E-mail : ias-oappr@mail2.adm.kyoto-u.ac.jp
Tel : 075-753-9755 / Fax : 075-753-9759

新機構を備えた複腕建設ロボット―ImPACTタフ・ロボティクス・チャレンジによる新しい災害対応重作業ロボットの開発―

$
0
0

研究成果のポイント

  • 従来の油圧ショベルは災害現場で求められる多様な作業に対応することが困難という課題があった。
  • 2重旋回・複腕機構[用語1]の採用により、多様な作業へ適応性が高く、かつ、災害対応で必要な重作業が可能なロボットを開発。
  • 掘削モードや把持モードに形状変更が可能で、対象物を柔らく掴むこともできる建設ロボット用多指ハンドを開発。

概要

内閣府総合科学技術・イノベーション会議が主導する革新的研究開発推進プログラム(ImPACT)タフ・ロボティクス・チャレンジ研究開発課題「災害対応建設ロボットの開発」(研究開発課題責任者:大阪大学 大学院工学研究科 大須賀公一(おおすか こういち)教授、プログラム・マネージャー:東北大学 大学院情報科学研究科 田所諭(たどころ さとし)教授)において、大阪大学 大学院工学研究科 吉灘裕(よしなだ ひろし)特任教授(常勤)、東京工業大学 工学院 鈴森康一(すずもり こういち)教授らは、2重旋回機構を用いた複腕の災害対応重作業ロボット(建設ロボット)を開発しました(図1)。

2重旋回・複腕ロボット

図1. 2重旋回・複腕ロボット

本ロボットは2本の腕を持っています。複数の腕を持つ重機械は、これまでにもいくつかの開発事例がありますが、本ロボットで採用した2重旋回・複腕機構は、従来の複腕重機の課題を解決し、また複腕の活用範囲を大幅に拡張することができます。

現在、プロトタイプを用いてフィールドでの実験を開始しており、また本研究開発で開発を進めている主な要素技術をロボットに搭載して、開発コンセプトに描いた建設ロボットの実現を目指しています。

研究の背景と経緯

土砂崩れや建物の倒壊などの災害対応作業には、多くの場合、建設機械が投入されています。中でも油圧ショベルは、クローラ[用語2]を用いた走行機構がもたらす走破性[用語3]と、多関節の作業機が可能とする多機能な作業性により、災害現場での中心的な役割を担っています。しかし、従来の油圧ショベルは、急勾配の斜面や大きな段差のある災害現場へのアクセスの能力が十分ではありませんでした。また瓦礫除去などの際に、再崩落を発生させないように、精密で微細なコントロールの対象物操作を行うことは油圧ショベルでは難しく、さらに災害現場で求められる多様な作業に対応することは困難でした。

また災害対応では、オペレータにも危険が及ぶ状況が予想されるため、遠隔で機械を操作できることが必要です。油圧ショベルには、ラジコンの遠隔操縦装置がオプションとして準備されていますが、多くは100 m以内の距離からの直視による遠隔操作であり、災害現場への対応としては十分ではありません。画像伝送を用いた長距離の遠隔操作には、雲仙普賢岳の砂防工事などに用いられた無人化施工システムがありますが、比較的定型的な作業に限定されること、作業性を高めるためには油圧ショベルの周囲に複数のカメラ車を配置する必要があることなど、使用できる状況は限定されています。また遠隔操作時は作業効率が搭乗操作時の60%程度に低下することが大きな課題となっています。

本研究開発チームは、ImPACTタフ・ロボティクス・チャレンジの共同研究開発の一つのテーマとして、これらの課題を解決した災害対応の重作業ロボットの開発を進めてきました。このたび本研究開発の最終コンセプトである2重旋回・複腕機構を採用したロボットのプロトタイプが完成し、災害現場を模擬した評価試験フィールドにて実証試験を開始しました。

研究内容(本研究成果の意義)

上述の課題を解決するため、以下の機構・機能を備えた新たな災害対応の建設ロボットを開発しました。

(1)重作業を器用に行え、急傾斜地・段差の移動に性能を発揮できる、2重旋回・複腕機構(大阪大・吉灘)

開発したロボットに適用した2重旋回・複腕機構は、左右の腕と、肩の旋回部を同軸上に重ねたもので、人間や動物のように、肩の関節が別々の軸上に配される機構に比べて、はるかに大きな直径のベアリング[用語4]を肩の旋回部に使うことができます。またロボットの重心付近で両腕を支持しているので、ロボットの安定性が高いという特長があります。この機構の採用により、本ロボットは大きな負荷への適応性が高く、重作業に適した構造となっています。さらに同軸上に配置されたそれぞれの腕が360°回転するため、右手、左手の区別はなく、両手のレイアウトを自由に変更することができます。

今回開発したロボットでは、油圧システムの応答性を従来の建設機械より一桁高めることにより、優れた運動特性を実現しています。また力覚や触覚をフィードバックすることにより、従来の建設機械では困難であった繊細かつ器用な作業性を実現しています。両腕はどちらも重負荷対応ですが、一方の腕は油圧ショベルのような重作業向け、もう一方の腕は、マニピュレータ[用語5]のような繊細かつ器用な作業用と異なる特性を与えています。このため多様で複雑な災害現場での作業に、柔軟に対応することができます。もちろん両腕を協調した作業も可能です。

また、本ロボットでは、自由にレイアウトできる腕で地面を支えながら、クローラで移動することが可能で、災害現場の厳しい環境への適応性も高くなっています。例えば、急傾斜地や凹凸の激しい現場でも、片腕で立木や地面の固定物を掴んでロボットを安定化させ、もう片方の腕でハンドリング作業を行うことができます。また腕とクローラを協調して動作させることで、段差を乗り越えたりすることも可能です(図2)。

2重旋回・複腕機構による両手のレイアウトと作業例

図2. 2重旋回・複腕機構による両手のレイアウトと作業例

2重旋回・複腕機構は、各旋回部への油圧配管や信号線の接続が難しい構造です。過去に開発したロボットでは、エンジンや油圧ポンプ、無線通信機器などがロボットの最上段に搭載されており、これらの油圧や信号を、中段、下段の旋回部に、360°エンドレスに旋回可能な状態で接続することは容易ではありません。本ロボットでは、油圧配管機構と信号伝達機能を一体化したコンポーネントを新たに開発し、これらを実現しています。

(2)建設ロボット用多指ハンド (東工大・鈴森)

本研究開発チームは、建設ロボット用の4本指ハンドを開発して、片方の腕に装着しています。このハンドは形状を変更することにより、バケット(ショベル)のような「掘削」と、ハンドの「把持」のモードを切り替えることができます。さらに、対象物の形状に応じたハンド形状の変更や、握力の幅広い制御も可能です。

従来の油圧ショベルでは、バケット(ショベル)あるいはグラップル(開閉ハンド)といった比較的簡単な構造のアタッチメントが使われてきました。しかし災害現場ではさまざまな形状の対象物を扱う必要があります。相手の形状に応じてアタッチメントの形状や機能を切り替えたり、状況に応じて大きな力でしっかり握ったり、逆に相手を壊さないように小さな力でやさしく握ったりする必要もあります。このような状況を踏まえて、4指のロボットハンドを開発しました。6個の油圧シリンダと2つの油圧モータで駆動され、主に砂利などを扱う「バケットモード」と、対象物の形に応じて4本の指で対象物を扱う「ハンドモード」に切り替えることができます。ハンドモードでは相手の形状に応じて握ることができ(図3、4)、また握力は最大約300キロから最小1.4キロまで、油圧の制御により自由に調整することができます。このハンドの開発における技術ポイントは、小型高性能の油圧シリンダと油圧モータの開発です。油圧シリンダや油圧モータは工場や建設機械において既に数多く使われていますが、既存のものは、サイズ、重さ、動きの繊細さの点で、ロボットの駆動には適していませんでした。

そこで本研究開発チームでは、小型油圧シリンダの専門メーカであるJPN株式会社(東京都大田区、日沖清弘代表取締役)の協力を得て、ロボット駆動に適した、小型、低摩擦、軽量、センサ内蔵の油圧シリンダと油圧モータを新規に開発しました。従来の油圧シリンダに比べ、約2~5倍の「力/自重比」、約1/3~1/5倍の低摩擦動作といった特徴を持ちます。これらの油圧シリンダや油圧モータにより、大きな力、なめらかな動作、器用な動作のハンドの実現に成功しました。

多指ハンドの作業例(左:多指モードによる物体把持 右:バケットモードによる砂利すくい)

図3. 多指ハンドの作業例(左:多指モードによる物体把持 右:バケットモードによる砂利すくい)

相手の形に応じて指が曲がるので複雑な形状の重量物も安定して把持できる

図4. 相手の形に応じて指が曲がるので複雑な形状の重量物も安定して把持できる

(3)遠隔操作高度化のための要素技術(神戸大・横小路、東北大・昆陽、東北大・永谷、東大・山下)

本ロボットでは、遠隔で操縦するオペレータが、まるで対象物を触っているかのような力覚と触覚を感じながら、精密で確実な作業ができる機能を搭載しています。

また、ロボットの外にカメラを置かなくとも、対象物や地形を、視点を変えながら見ることができる、有線給電ドローンと任意視点の俯瞰映像合成システムを搭載しており、精密な作業や複雑な地形での移動を容易にしています。

遠隔操作高度化のための要素技術は、平成28年11月の建設ロボット実験機(単腕モデル)公開評価会の際にプレスリリース(平成28年11月「遠隔操作性と繊細な作業性を備えた建設ロボットを開発」)で発表したものですが、今回さらに機能・性能を向上させて搭載しています(図5)。

建設ロボット搭載要素技術

図5. 建設ロボット搭載要素技術

今後の展開

今回性能を確認した要素技術以外にも、複数の有用な要素技術の開発を行っています。今後、順次それらの要素技術を搭載していきます。また、操作する関節数の多い複腕ロボットを、容易に操縦できる遠隔操作システムの開発を進めており、これらの技術の導入により、より実現場に近い環境での作業実験に進む計画です。

田所諭 ImPACTプログラム・マネージャーのコメント

田所諭 ImPACTプログラム・マネージャー

ImPACTタフ・ロボティクス・チャレンジは、災害の予防・緊急対応・復旧、人命救助、人道貢献のためのロボットに必要不可欠な、「タフで、へこたれない」さまざまな技術を創りだし、防災における社会的イノベーションとともに、新事業創出による産業的イノベーションを興すことを目的とし、プロジェクト研究開発を推進しています。

災害危険地域では、遠隔・自律で重作業を行うことが必要ですが、これまでの遠隔建設機械は、器用さが不足、重作業が不可能、斜面や段差での移動に限界がある、遠隔操作が困難で作業効率が低い、という問題があり、根本的な解決が望まれています。本研究開発は、2重旋回・複腕機構と高出力油圧ハンドにより、これらの問題の解決を図ろうとするものです。重量物のハンドリングが可能な複腕により、作業や移動の能力を飛躍的に向上させ、高出力ハンドにより様々な掘削や把持を可能にする、非連続イノベーションを目指しています。これは大規模災害や事故への対応能力を飛躍的に高めるだけでなく、従来型建機との代替によってこれまでの土木・建築工事の方法論を根本的に変革する可能性を秘めていると考えています。今後の改良、要素技術との統合、限界性能試験によって、数年後の現場適用、実用化を目指しています。

特記事項

本成果は、以下の事業・研究プロジェクトによって得られました。

内閣府 革新的研究開発推進プログラム(ImPACT)outer

プログラム・マネージャー:
田所諭
研究開発プログラム:
タフ・ロボティクス・チャレンジ
研究開発課題:
災害対応建設ロボットの開発
研究開発課題責任者:
大須賀公一
研究期間:
平成26年度~平成30年度

本研究開発課題では、パワフルさと繊細かつ器用な作業性とを併せ持つ災害対応重作業建設ロボットの開発に取り組んでいます。

用語説明

[用語1] 2重旋回・複腕機構 : 左右の腕と、肩の旋回部を同軸上に重ねたもの。

[用語2] クローラ : 悪路や軟弱地での走行性能を向上させるために、前後輪を一帯に接続された履板で囲んだ走行機構。無限軌道、キャタピラとも呼ばれる。戦車やブルドーザなどの建設機械に用いられている。

[用語3] 走破性 : 悪路や軟弱地を走行できる性能のこと。

[用語4] ベアリング : 回転体や直動体を支え摩擦を減らす部材のこと。本プレスリリースでは回転式のころがり軸受けを指している。

[用語5] マニピュレータ : ロボットの腕や手に当たる部分のこと。人間の腕のような自在な動きができるものを指す場合が多い。

工学院

工学院 ―新たな産業と文明を拓く学問―
2016年4月に発足した工学院について紹介します。

工学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

研究に関すること

大阪大学 大学院工学研究科
特任教授(常勤) 吉灘裕

E-mail : yoshinada@jrl.eng.osaka-u.ac.jp
Tel : 06-6875-1509

東京工業大学 工学院 機械系
教授 鈴森康一

E-mail : suzumori@mes.titech.ac.jp
Tel : 03-5734-3177

神戸大学 大学院工学研究科
教授 横小路泰義

E-mail : yokokohji@mech.kobe-u.ac.jp
Tel : 078-803-6341

東北大学 未来科学技術共同研究センター
准教授 永谷圭司

E-mail : keiji@ieee.org
Tel : 022-795-4317

東北大学 大学院情報科学研究科
准教授 昆陽雅司

E-mail : konyo@rm.is.tohoku.ac.jp
Tel : 022-795-7025

東京大学 大学院工学系研究科
准教授 山下淳

E-mail : yamashita@robot.t.u-tokyo.ac.jp
Tel : 03-5841-6457

ImPACTの事業に関すること

内閣府 革新的研究開発推進プログラム担当室

Tel : 03-6257-1339

ImPACTプログラム内容およびプログラム・マネージャー(PM)に関すること

科学技術振興機構 革新的研究開発推進室

E-mail : impact@jst.go.jp
Tel : 03-6380-9012 / Fax : 03-6380-8263

取材申し込み先

大阪大学 工学研究科 総務課 評価・広報係

E-mail : kou-soumu-hyoukakouhou@office.osaka-u.ac.jp
Tel : 06-6879-7231 / Fax : 06-6879-7210

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

東北大学 大学院情報科学研究科 総務係

E-mail : is-somu@grp.tohoku.ac.jp
Tel : 022-795-5813 / Fax : 022-795-5815

神戸大学 総務部 広報課

E-mail : ppr-kouhoushitsu@office.kobe-u.ac.jp
Tel : 078-803-6696 / Fax : 078-803-5088

東京大学 工学部・大学院工学系研究科 広報室

E-mail : kouhou@pr.t.u-tokyo.ac.jp
Tel : 03-5841-1790 / Fax : 03-5841-0529

科学技術振興機構 広報課

E-mail : jstkoho@jst.go.jp
Tel : 03-5214-8404 / Fax : 03-5214-8432


NHK Eテレ「サイエンスZERO」に細野秀雄教授が出演

$
0
0

本学 科学技術創成研究院 フロンティア材料研究所の細野秀雄教授・元素戦略研究センター長がNHK Eテレ「サイエンスZERO」に出演します。

細野教授(左)とC12A7の模型を手にした南沢さん(右)

細野教授(左)とC12A7の模型を手にした南沢さん(右)

「サイエンスZERO」は、私たちの未来を変えるかもしれない最先端の科学と技術を紹介するとともに、世の中の気になる出来事に科学と技術の視点で切り込む番組です。

すずかけ台キャンパスの元素戦略研究センターを「サイエンスZERO」キャスターの南沢奈央さんが訪れ、細野教授らが発見したアンモニア合成の新技術について取材しました。

2003年に細野教授らの研究グループはセメント鉱物のひとつである12CaO・7Al2O3(以下C12A7)のケージ構造中の酸素イオンを電子で置き換えた電子化物(電子が陰イオンとして働く物質)C12A7エレクトライドの合成に成功しました。C12A7そのものはセメントの成分でもあり絶縁体ですが、C12A7エレクトライドは金属のように電気をよく流し、アルカリ金属のように電子を極めて放出しやすく、しかも化学的・熱的に安定というユニークな性質を持ちます。この性質をアンモニア合成の触媒に応用するためにルテニウムと組み合わせることで、より低いエネルギーで効率のよいアンモニア合成を実現しました。

アンモニアは肥料や食品・医薬品の原料となる重要な化合物で、世界総生産量は年間1億6千万トンを超えています。その合成法(ハーバー・ボッシュ法)は、1913年にフリッツ・ハーバーとカール・ボッシュによって確立されました。それ以来、100年以上、さらに効率のよい触媒を求めて研究が行われましたが、ハーバー・ボッシュ法を凌駕する触媒プロセスは見いだされておらず、近年では挑戦者がほとんどいない研究とされていました。ハーバー・ボッシュ法は高温高圧の反応条件と大規模な施設が必要でしたが、細野教授らが発見・開発した技術は低温低圧でオンサイト(アンモニアを必要とするメーカーの生産拠点や、小型プラントの現場などで)の小規模アンモニア生産の実現に一歩近づきました。

4月25日には、味の素株式会社、ユニバーサル マテリアルズ インキュベーター株式会社(UMI)らと新会社「つばめBHB株式会社」を設立し、世界で初めてとなるオンサイト型のアンモニア合成システムの実用化を目指しています。

  • アンモニア合成をしている様子

    アンモニア合成をしている様子

  • C12A7の粉末(左)、C12A7エレクトライドの粉末(右)

    C12A7の粉末(左)、C12A7エレクトライドの粉末(右)

細野秀雄教授のコメント

サイセンスZEROに研究のトピックスを取り上げて頂くのは、今回で4回目になります。C12A7の研究は、学生実験の監督をやっていた時に気付いた色の変化がきっかけですので、もう30年くらい、この物質を舞台にした機能発現の研究をやっていることになりますが、昨今では「電子化物」という物質科学の新領域が国際的に広がりつつあります。こんなありふれた元素のみで超伝導など多彩な電子機能が実現できることから、「元素戦略の象徴」と呼ばている所以だと思います。アンモニア合成触媒への応用に関しては、本学で研究された尾崎先生、秋鹿先生が提唱したルテニウムを窒素を捕まえる触媒として使用し、現役の触媒研究者の原先生、北野先生との共同研究のおかげです。個人的には、この番組のキャスターの南沢奈央さんのファンですので、大変に嬉しい経験ができました。関係者に感謝、感謝です。

  • 番組名
    NHK Eテレ サイエンスZERO
  • タイトル
    CO2削減の切り札!アンモニア研究最前線
  • 放送予定日
    2017年6月25日(日) 23:30 - 24:00
  • 再放送予定日
    2017年7月1日(土) 12:30 - 13:00

物質理工学院

物質理工学院 ―理学系と工学系、2つの分野を包括―
2016年4月に発足した物質理工学院について紹介します。

物質理工学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975

東工大TSUBAME3.0と産総研AAICが省エネ性能スパコンランキングで世界1位・3位を獲得

$
0
0
  • 東工大の次期スーパーコンピューター「TSUBAME3.0」が、Green500 List(省エネ性能の世界スパコンランキング)において世界1位を達成
  • 産総研のクラウド型計算システム「産総研AIクラウド」(AAIC)が、同Green500 Listにおいて世界3位、空冷方式では世界1位を達成
  • 「産総研・東工大 実社会ビッグデータ活用オープンイノベーションラボラトリ」(RWBC-OIL)における計算プラットフォーム構築技術の研究協力による成果

本学と国立研究開発法人産業技術総合研究所(理事長 中鉢良治、以下、産総研)でそれぞれ保有するスパコンが、世界のスパコンの省エネ性能ランキングGreen500 List[用語1]において1位と3位を獲得しました。これはドイツ・フランクフルト市で開かれたスーパーコンピューターに関する国際会議“ISC HIGH PERFORMANCE 2017(ISC 2017)”において6月19日(ドイツ時間)に発表されました。本成果は、2017年2月20日に設置された「産総研・東工大 実社会ビッグデータ活用オープンイノベーションラボラトリ」(ラボ長 松岡聡、以下、RWBC-OIL)における研究協力によるものです。

東工大 学術国際情報センター(GSIC)が2017年8月に本格稼動予定のスーパーコンピューター「TSUBAME3.0」は、Green 500 Listの2017年6月版において1ワットあたり14.090ギガフロップス[用語2]という値を記録し、実際に運用するスパコンとしては日本で初めて世界1位になりました。

また、産総研 人工知能研究センター(AIRC)が、2017年4月に稼働を開始したクラウド型計算システム「産総研AIクラウド(AAIC)」が、上記のGreen 500 Listにおいて1ワットあたり12.681ギガフロップスという値を記録して世界3位になりました。

東工大と産総研は長年にわたり高性能計算技術・省電力計算技術・ビッグデータ計算技術などの分野における研究協力を続け、RWBC-OILを設置して本格的な活動を開始しています。東工大と産総研の計算プラットフォームが世界1位と3位という好成績を獲得できたのはRWBC-OILによる省エネ型高性能計算プラットフォーム構築技術など両機関の研究協力が加速できたことによるものです。

TSUBAME 3.0(完成予想図)
TSUBAME 3.0(完成予想図)

産総研AIクラウド(AAIC)
産総研AIクラウド(AAIC)

東工大のTSUBAME3.0は、2010年より「みんなのスパコン」として国内外の産学官の研究開発を支えてきたTSUBAME2.0/2.5の後継機です。その設計・開発・運用準備は東工大GSICが日本SGI株式会社・米国NVIDIA社、関連各社と協同で進めており、次のような特長を持ちます。

  • 人工知能(AI)やビッグデータ分野では16bitの半精度[用語3]での計算処理が有効とされており、この精度において47.2ペタフロップスと、国内最大級の性能となります。NVIDIA社の最新GPU[用語4] Tesla P100 を2,160基搭載し、このような性能が実現されました。
  • コンピューターそのものと冷却システムの双方が、世界トップクラスの省エネ性能を持ちます。計算ノードには高性能かつ省電力な最新のGPUを搭載し、冷却については、外気に近い温度の冷却水を用いてGPU/CPUの直接冷却を行うなどにより、高い省エネ性を実現しています。とくに冷却効率を示す指標の一つであるPUE(Power Usage Effectiveness)[用語5]の値は1.033(推定値)と極めて高い効率となり、より少ない電力での計算を可能にします。

これらの設計には、東工大GSICが推進してきた文部科学省「スパコン・クラウド情報基盤におけるウルトラグリーン化技術」および「スマートコミュニティ実現のためのスパコン・クラウド情報基盤のエネルギー最適化の研究推進」などのプロジェクトの研究成果が活用されています。これらのプロジェクトによるテストベッドスパコン「TSUBAME-KFC[用語6]」は、2013年・2014年にGreen 500 List世界1位を獲得しましたが、そこで培われた高温液体冷却に関する知見などをもとに、TSUBAME3.0は設計されました。

また、産総研AAICは、経済産業省「人工知能・IoTの研究開発加速のための環境整備事業」(平成27年度補正予算)の一環として整備されたAI・ビッグデータ処理のための共用計算プラットフォームです。これを用いて産学官連携を促進し、多様な事業者による人工知能・IoT技術の研究開発・実証の加速を目的としています。産総研 人工知能研究センターが産総研AAICの設計・開発を行い、一般競争入札により日本電気株式会社および米国NVIDIA社の技術を採用しました。2017年4月に試験的運用を開始し、以下の特長を持ちます。

  • NVIDIA社のTesla P100を計400基搭載し、半精度での性能指標で8.6ペタフロップスと、AI研究開発にフォーカスした共用計算プラットフォームとして現在国内最大級の性能となります。
  • リアルタイムの電力モニタリングデータに基づいて、ストレージシステム、ネットワーク機器を含むシステム全体の消費電力を最大で150 kWに抑える省エネ運用を可能としました。これにより、電力あたりの計算性能を維持しつつ、特殊な冷却システムを必要とせず、一般的なサーバールームでの運用を可能としています。

産総研AAICでは、RWBC-OILによる東工大GSICとの研究協力を通じて確立してきた技術的知見などが活用されています。

今回の結果は、両機関における長年の多岐にわたる大規模計算機の省エネルギー化に関わる研究成果が結実したものと言えます。東工大においては、前述のプロジェクトだけでなく、科学技術振興機構の戦略的創造研究推進事業(JST-CREST)「EBD:次世代の年ヨッタバイト処理に向けたエクストリームビッグデータの基盤技術」や「ULP-HPC 次世代テクノロジのモデル化・最適化による超低消費電力ハイパフォーマンスコンピューティング」などの基礎研究プロジェクト、また米国NVIDIA社との数年来の共同研究プロジェクトにおいて、最新技術であるGPUのスパコンにおける活用や高性能計算システム(HPCシステム)の省電力化の研究などが続けられてきました。産総研においてはNEDO「グリーンネットワーク・システム技術研究開発」で得られた電力モニタリングに応じたサーバー運用技術の適用、さらにRWBC-OILによりGPUベースの計算プラットフォーム構築に関する相互の技術共有が加速されました。これらを総合することで今回の世界でトップクラスの実用に供される省エネなシステムの実現という成果につながりました。

この成果は産総研に2017年度導入予定の「AI橋渡しクラウド(AI Bridging Cloud Infrastructure、ABCI)[用語7]」の構築に活かしていきます。今後両機関は、RWBC-OILにおいて、TSUBAME3.0と産総研AAICを相互に活用しながら、ビッグデータ活用のためのシステム連携技術や大規模データ解析技術の研究を行うとともに、運用から発生する課題をハードウェア構築技術の高度化研究に活かします。RWBC-OILでの研究活動を通じて、両機関の技術融合による実社会ビッグデータの活用基盤の構築を行い、人工知能を含むビッグデータ処理技術・省エネ技術などの実社会への応用を目指します。

用語説明

[用語1] Green500 List : スパコンのベンチマーク速度性能を半年ごとに世界1位から500位までランキングするThe TOP 500 Listに対して、近年のグリーン化の潮流を受けTOP500のスパコンの電力性能(速度性能値/消費電力)を半年ごとにランキングしているリスト。

[用語2] メガフロップス(Mega FLOPS)、ギガフロップス(Giga FLOPS)、ペタフロップス(Peta FLOPS)、テラフロップス(Tera FLOPS) : フロップスは1秒間で何回浮動小数点の演算ができるかという性能指標。メガ(10の6乗)、ギガ(10の9乗)、テラ(10の12乗)、ペタ(10の15乗)などは接頭語。

[用語3] 半精度 : 数値(実数)のコンピューター内の表現方法の一つ。2バイトで表現され、有効桁数は10進で約3.3桁である。最新のGPUなどを用いると、倍精度(8バイト、約16桁)や単精度(4バイト、約7桁)よりも高速な演算が可能であり、機械学習/AI分野における活用の研究が進んでいる。

[用語4] GPU(Graphics Processing Unit) : 本来はコンピューターグラフィックス専門のプロセッサだったが、グラフィックス処理が複雑化するにつれ性能および汎用性を増し、現在では実質的にはHPC用の汎用ベクトル演算プロセッサに進化している。

[用語5] PUE(Power Usage Effectiveness) : データセンターやスパコンの冷却効率を示す指標の一つ。システム全体電力を計算ノードなどのIT機器電力で割った値で、1.0に近いほど冷却機器などの電力効率が良いとされる。

[用語6] TSUBAME-KFC : TSUBAMEシリーズと同様にGPUを搭載するスパコンで、スパコンの省電力化のための実証実験設備である。油浸による冷却システムを採用。2013年11月と2014年6月の世界のスパコンの省エネランキングGreen500で第1位になっている。

[用語7] AI橋渡しクラウド(AI Bridging Cloud Infrastructure、ABCI) : 産総研が今年度末の導入を計画しているクラウドシステムで、TSUBAME3.0に匹敵する省エネ性能と、世界トップクラスの人工知能処理性能の両立を目指している。

お問い合わせ先

東京工業大学 学術国際情報センター

E-mail : kib.som@jim.titech.ac.jp

Tel : 03-5734-2087

産業技術総合研究所
人工知能研究センター 人工知能クラウド研究チーム
研究チーム長 小川宏高

Tel : 029-861-3092

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp

Tel : 03-5734-2975 / Fax : 03-5734-3661

産業技術総合研究所 企画本部 報道室

E-mail : press-ml@aist.go.jp

Tel : 029-862-6216 / Fax : 029-862-6212

スーパーコンピュータ「京」がGraph500において5期連続で世界1位を獲得

$
0
0

スーパーコンピュータ「京」がGraph500において5期連続で世界1位を獲得
―ビッグデータの処理で重要となるグラフ解析で最高の評価―

概要

九州大学と東京工業大学、理化学研究所、スペインのバルセロナ・スーパーコンピューティング・センター、富士通株式会社による国際共同研究グループは、2017年6月21日(水)(米国ソルトレイクシティ現地時間)に公開された最新のビッグデータ処理(大規模グラフ解析)に関するスーパーコンピュータの国際的な性能ランキングであるGraph500において、スーパーコンピュータ「京(けい)」[用語1]による解析結果で、2016年11月に続き5期連続(通算6期)で第1位を獲得しました。

大規模グラフ解析の性能は、大規模かつ複雑なデータ処理が求められるビッグデータの解析において重要となるもので、「京」は正式運用開始から5年以上が経過していますが、今回のランキング結果によって、現在でもビッグデータ解析に関して世界トップクラスの極めて高い能力を有することが実証されました。今後本成果の広範な普及のため、プログラムをオープンソース化し、大規模高性能グラフ処理のグローバルスタンダードを確立して行く予定です。

本研究の一部は、科学技術振興機構(JST)戦略的創造研究推進事業CREST「ポストペタスケール高性能計算に資するシステムソフトウェア技術の創出」(研究総括:佐藤三久 理化学研究所 計算科学研究機構)における研究課題「ポストペタスケールシステムにおける超大規模グラフ最適化基盤」(研究代表者:藤澤 克樹 九州大学、拠点代表者:鈴村豊太郎 バルセロナ・スーパーコンピューティング・センター)および「ビッグデータ統合利活用のための次世代基盤技術の創出・体系化」(研究総括:喜連川優 国立情報学研究所)における研究課題「EBD:次世代の年ヨッタバイト処理に向けたエクストリームビッグデータの基盤技術」(研究代表者:松岡聡 東京工業大学)の一環として行われました。

スーパーコンピュータ「京」

2017年6月21日に公開されたGraph500上位5位

順位
システム名称
設置場所
ベンダー
国名
1
理研 計算科学研究機構
富士通
82,944
40
38,621
2
神威太湖之光
(Sunway TaihuLight)
無錫国立スーパーコンピューティングセンター
NRCPC
40,768
40
23,756
3
Sequoia
ローレンス・リバモア研究所
IBM
98,304
41
23,751
4
Mira
アルゴンヌ研究所
IBM
49,152
40
14,982
5
JUQUEEN
ユーリッヒ研究所
IBM
16,384
38
5,848

Graph500とは

近年活発に行われるようになってきた実社会における複雑な現象の分析では、多くの場合、分析対象は大規模なグラフ(節と枝によるデータ間の関連性を示したもの)として表現され、それに対するコンピュータによる高速な解析(グラフ解析)が必要とされています。例えば、インターネット上のソーシャルサービスなどでは、「誰が誰とつながっているか」といった関連性のある大量のデータを解析するときにグラフ解析が使われます。また、サイバーセキュリティや金融取引の安全性担保のような社会的課題に加えて、脳神経科学における神経機能の解析やタンパク質の相互作用分析などの科学分野においてもグラフ解析は用いられ、応用範囲が大きく広がっています。こうしたグラフ解析の性能を競うのが、2010年から開始されたスパコンランキング「Graph500」です。

規則的な行列演算である連立一次方程式を解く計算速度(LINPACK[用語2])でスーパーコンピュータを評価するTOP500[用語3]においては、「京」は2011年(6月、11月)に第1位、その後、2017年6月19日に公表された最新のランキングでも第8位につけています。一方、Graph500ではグラフの幅優先探索(1秒間にグラフのたどった枝の数(Traversed Edges Per Second; TEPS[用語4]))という複雑な計算を行う速度で評価されており、計算速度だけでなく、アルゴリズムやプログラムを含めた総合的な能力が求められます。

今回Graph500の測定には、「京」が持つ88,128台のノード[用語5]82,944台を用いています。約1兆個の頂点を持ち16兆個の枝から成るプロブレムスケール[用語6]の大規模グラフに対する幅優先探索問題を0.45秒で解くことに成功しました。ベンチマークのスコアは38,621 GTEPS(ギガテップス)です。Graph500第1位獲得は、「京」が科学技術計算でよく使われる規則的な行列演算だけでなく、不規則な計算が大半を占めるグラフ解析においても高い能力を有していることを実証したものであり、幅広い分野のアプリケーションに対応できる「京」の汎用性の高さを示すものです。また、それと同時に、高いハードウェアの性能を最大限に活用できる研究チームの高度なソフトウェア技術を示すものと言えます。「京」は、国際共同研究グループによる「ポストペタスケールシステムにおける超大規模グラフ最適化基盤」および「EBD:次世代の年ヨッタバイト処理に向けたエクストリームビッグデータの基盤技術」の2つの研究プロジェクトによってアルゴリズムおよびプログラムの開発が行われ、2014年6月に17,977 GTEPSの性能を達成し第1位、また「京」のシステム全体を効率良く利用可能にするアルゴリズムの改良が行われ2倍以上性能を向上させ、2015年7月に38,621 GTEPSを達成し第1位でした。そして今回のランキングでもこの記録は神威太湖之光等の新しいシステムに比べても大幅に高いスコアであり、世界第1位を5期連続(通算6期)で獲得しました。

今後の展望

大規模グラフ解析においては、アルゴリズムおよびプログラムの開発・実装によって性能が飛躍的に向上する可能性を示しており、研究グループでは今後も更なる性能向上を目指していきます。また、上記で述べた実社会の課題解決および科学分野の基盤技術へ貢献すべく、スーパーコンピュータ上でさまざまな大規模グラフ解析アルゴリズムおよびプログラムを研究開発していきます。

用語説明

[用語1] スーパーコンピュータ「京(けい)」 : 文部科学省が推進する「革新的ハイパフォーマンス・コンピューティング・インフラ(HPCI)の構築」プログラムの中核システムとして、理研と富士通が共同で開発を行い、2012年に共用を開始した計算速度10ペタフロップス級のスーパーコンピュータ。「京(けい)」は理研の登録商標で、10ペタ(10の16乗)を表す万進法の単位であるとともに、この漢字の本義が大きな門を表すことを踏まえ、「計算科学の新たな門」という期待も込められている。

[用語2] LINPACK : 米国のテネシー大学のジャック・ドンガラ博士らによって開発された規則的な行列計算による連立一次方程式の解法プログラムで、TOP500リストを作成するために用いるベンチマーク・プログラム。ハードウェアのピーク性能に近い性能を出しやすく、その計算は単純だが、応用範囲が広い。

[用語3] TOP500 : TOP500は、世界中のコンピュータシステムの、連立一次方程式の処理速度上位500位までを定期的にランク付けし、評価するプロジェクト。1993年に発足し、スーパーコンピュータのリストを年2回発表している。

[用語4] TEPS(Traversed Edges Per Second) : Graph500ベンチマークの実行速度をあらわすスコア。Graph500ベンチマークでは与えられたグラフの頂点とそれをつなぐ枝を処理する。Graph500におけるコンピュータの速度は1秒間あたりに調べ上げた枝の数として定義されている。G(ギガ)は10の9乗(=10億)を表す接頭辞。

[用語5] ノード : スーパーコンピュータにおけるオペレーティングシステム(OS)が動作できる最小の計算資源の単位。「京」の場合は、ひとつのCPU(中央演算装置)、ひとつのICC(インターコネクトコントローラ)、および16GBのメモリから構成される。

[用語6] プロブレムスケール : Graph500ベンチマークが計算する問題の規模をあらわす数値。グラフの頂点数に関連した数値であり、プロブレムスケール40の場合は2の40乗(約1兆)の数の頂点から構成されるグラフを処理することを意味する。

情報理工学院

情報理工学院 ―情報化社会の未来を創造する―
2016年4月に新たに発足した情報理工学院について紹介します。

情報理工学院

学院・系及びリベラルアーツ研究教育院outer

問い合わせ先

九州大学 広報室

Email : koho@jimu.kyushu-u.ac.jp
Tel : 092-802-2130 / Fax : 092-802-2139

東京工業大学 広報・社会連携本部 広報・地域連携部門

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

理化学研究所 広報室 報道担当

Email : ex-press@riken.jp
Tel : 048-467-9272 / Fax : 048-462-4715

富士通株式会社 富士通コンタクトライン(総合窓口)

Tel : 0120-933-200

受付時間:9時~17時30分
(土曜日・日曜日・祝日・年末年始を除く)

株式会社フィックスターズ マーケティング担当

Email : press@fixstars.com
Tel : 03-6420-0758

科学技術振興機構 広報課

Email : jstkoho@jst.go.jp
Tel : 03-5214-8404 / Fax : 03-5214-8432

ロボコンの創始者・森政弘名誉教授 ロボットの未来を語る ―CNN番組に登場

$
0
0

ロボットコンテスト※1の創始者であり、ロボット工学の世界的パイオニアである森政弘名誉教授がCNNのロボット特集番組に出演します。

森政弘名誉教授がCNNのロボット特集番組に出演
森政弘名誉教授がCNNのロボット特集番組に出演

CNNの取材は森名誉教授が居を構えている宮崎市内で実施されました。90歳という高齢にもかかわらず、パソコン、動画、ホワイトボードを駆使して、これまでのロボット研究や今後のロボットのあり方について熱く語りました。

「ロボットをだんだんと人間に似せてくると親しさがわいてきます。ところが、似れば似るほど、ある段階で不気味で気持ち悪くなり、見るのも嫌になります。それを『不気味の谷』と名付けました。なぜ、そのような感情が起きるのかはわかりません。ASIMO※2のようなロボットは顔を人間に似せないことにより、不気味の谷を回避しています。」

「ロボット研究を始めた約30年前に研究室のメンバーを集めて将来のロボットのあり方について検討を行いました。ドローンや郵便配達ロボットなど、今のロボットの原型は全てアイデアとして出てきました。現在のロボット研究はその延長線上にあります。日本のロボット工学は世界をリードしていますが、その一番大きな理由はロボットを人間の敵とみなさず、仲間として見るという思想です。仏教学者という立場から見ても、将来のロボット工学研究については“倫理観”が極めて重要です。そのためには、進歩や物欲ばかり追求し、外的環境に振り回されてはいけません。一旦、歩みを止めて、内なる心を静かにし、自らの心を自らが制御し、心を自然の状態にすることが不可欠なのです。」

CNN特集番組 “The Future of Japan”

森政弘名誉教授
©cnn.com

番組名 : CNN.comouter

タイトル : The weird and wonderful world of Japanese robotsouter

掲載日 : 2017年6月15日(木)

森教授プロファイル

1969年に東京工業大学工学部制御工学科教授に着任。1987年に退官。技術的、哲学的観点からロボット工学に多大な業績を残している。1970年に「不気味の谷」現象を発見し、大きな反響を呼んだ。1975年に開催された沖縄海洋博において、ロボットが群れをなして自律的に動く「みつめむれつくり」を出展した。1971年から研究室で二足歩行ロボットの研究も開始し、膝が伸縮するタイプの二足歩行ロボットとその制御理論を開発。小手先の技術だけでなく、歩行に関する創造的な観点と哲学が必要であると考えた。その成果は弟子である竹中透氏(本田技研 主席研究員)が本田技術研究所においてASIMOとして実現している。

※1
ロボットコンテスト: 「アイデア対決・全国高等専門学校ロボットコンテスト(高専ロボコン)」。全国高等専門学校連合会、NHK、NHKエンタープライズの主催するロボットコンテスト(ロボコン)のひとつ。1988年から始まり、毎年NHKで放映されている。2017年はその30周年にあたる。
※2
ASIMO(アシモ): 本田技研工業が開発し、ホンダエンジニアリング株式会社が製造している世界初の本格的な二足歩行ロボット。人間の生活空間で活動することを想定して研究されている人型ロボットで、「Advanced Step in Innovative Mobility(新しい時代へ進化した革新的モビリティ)」という言葉の頭文字をとって名付けられた。

お問い合わせ先

広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975

骨格で支えられた人工細胞の形成に成功 薬用カプセルや化粧品などの応用に耐える補強が実現

$
0
0

ポイント

  • 骨格で支えられた人工細胞の形成に成功しました。
  • 骨格により耐久性が向上した人工細胞は、医薬品や化粧品への応用が期待されます。

東京農工大学 大学院工学研究院 先端物理工学部門の柳澤実穂テニュアトラック特任准教授、大学院生の黒川知加子、東京工業大学 情報理工学院 情報工学系の瀧ノ上正浩准教授ら、慶應義塾大学 理工学部 生命情報学科の藤原慶専任講師、東北大学 大学院工学研究科 ロボティクス専攻の村田智教授らのグループは、人工的に創られた細胞モデル(リポソーム[用語1]、もしくは人工細胞)に骨格を持たせ、現実の細胞並みに硬くすることに成功しました。

我々の体を構成する細胞は、細胞骨格と呼ばれるネットワーク構造により非常に安定になっています。リポソームは薬の輸送用カプセルや化粧品の材料として使われてきましたが、細胞骨格のような構造が無いため、わずかな刺激により壊れてしまう問題がありました。今回、DNAナノテクノロジー[用語2]と呼ばれる技術によって人工的な細胞骨格を作製し、リポソームに付与しました。この人工細胞骨格を持つリポソームは、従来の骨格を持たないリポソームが壊れてしまうような刺激に対しても崩壊せず、その形を維持しました。リポソームの耐久性を高めることは、薬用カプセルや化粧品などへ応用する上での最も大きな課題でしたが、今回の成果によりこの問題が克服される可能性があります。

本研究成果は、米国科学アカデミー紀要(Proceedings of the National Academy of Sciences of the United States of America(略称PNAS))オンライン版(6月26日付:日本時間6月27日)に掲載されました。

現状

リポソームは、基礎研究だけでなく、薬用カプセルや化粧品など多くの日用品に応用されています。しかし、膜が壊れやすく、内包物が漏れやすいという問題がありました。壊れにくくし、さらにその強度を自在に変化できれば、カプセルとしての機能を大幅に向上できるため、その手法が渇望されていました。

研究体制

本研究は、東京農工大学・柳澤実穂特任准教授、東京工業大学・瀧ノ上正浩准教授,東京農工大学大学院生・黒川知加子氏、慶應義塾大学・藤原慶専任講師、東京工業大学・森田雅宗研究員、東北大学・村田智教授、野村M.慎一郎准教授、川又生吹助教、川岸由研究員、東京農工大学大学院生・酒井淳氏、東京農工大学・村山能宏准教授が共同で実施しました。

研究成果

リポソームの強度を上げるため、細胞骨格のように膜を支えるネットワーク構造をDNAナノテクノロジーにより構築しました(図1・A)。本研究で用いたDNAは、温度低下に伴い、分岐を維持しながら互いに結合してネットワーク状の構造を作ります(図1・B)。またDNAはマイナスの電荷を帯びているため、リポソームの中のみにプラスの電荷を帯びさせることで、プラスとマイナスの引き合いにより膜直下へDNAの骨格を形成させることができました。リポソームは通常わずかな浸透圧差で崩壊してしまいますが、DNAからなる骨格を持つことにより体内で想定される浸透圧変化環境においても崩壊しないことを確認しました(図2)。この補強機能は、DNAが互いにネットワークを組むことに由来し、さらにその強度はDNAの塩基配列[用語3]により決定されています。そのため、DNA構造を設計することによる強度制御が期待されます。

(A)DNA骨格を備えたリポソームの断面像と(B)DNAのネットワーク化を示す模式図

図1. (A)DNA骨格を備えたリポソームの断面像と(B)DNAのネットワーク化を示す模式図

DNA骨格あり(左)となし(右)のリポソームに対し浸透圧変化を与えた際の生存割合

図2. DNA骨格あり(左)となし(右)のリポソームに対し浸透圧変化を与えた際の生存割合

今後の展開

今回形成した人工細胞骨格は、リポソームの内側に存在するため、外部との接触無しに膜を補強することができます。この成果により、リポソームのカプセルとしての機能強化が見込まれます。また、DNAで形成されているため、DNAの化学反応に基づく膜崩壊の誘発と内包物の放出制御など、多様な機能付与が期待されます。

用語説明

[用語1] リポソーム : 主に脂質からなる人工的な脂質二重膜小胞のこと。同じく脂質二重膜を基本構造とする細胞膜のモデル研究や、薬用カプセル・化粧品など、様々な分野で利用されている。

[用語2] DNAナノテクノロジー : DNAが二重らせんをとる性質を利用し、ナノサイズ(1mmの百万分の1)の形を自在に創り出す技術。本研究では、ネットワーク構造を作るDNAを作製し利用した。

[用語3] 塩基配列 : DNAはアデニン、グアニン、シトシン、チミンの4種類の塩基から出来ている。その配列のこと。

論文情報

掲載誌 :
Proceedings of the National Academy of Sciences of the United States of America
論文タイトル :
DNA cytoskeleton for stabilizing artificial cells
著者 :
Chikako KUROKAWA, Kei FUJIWARA,Masamune MORITA, Ibuki KAWAMATA, Yui KAWAGISHI, Atsushi SAKAI, Yoshihiro MURAYAMA, Shin-ichiro M. NOMURA, Satoshi MURATA, Masahiro TAKINOUE,Miho YANAGISAWA
DOI :

情報理工学院

情報理工学院 ―情報化社会の未来を創造する―
2016年4月に発足した情報理工学院について紹介します。

情報理工学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

東京農工大学大学院 工学研究院 先端物理工学部門

特任准教授 柳澤実穂

E-mail : myanagi@cc.tuat.ac.jp

Tel : 042-388-7113

東京工業大学 情報理工学院 情報工学系

准教授 瀧ノ上正浩

E-mail : takinoue@c.titech.ac.jp

Tel : 045-924-5680

取材申し込み先

東京工業大学 広報・社会連携本部 広報・地域連携部門

E-mail : media@jim.titech.ac.jp

Tel : 03-5734-2975 / Fax : 03-5734-3661

Viewing all 2008 articles
Browse latest View live