Quantcast
Channel: 更新情報 --- 研究 | 東工大ニュース | 東京工業大学
Viewing all 2008 articles
Browse latest View live

東京工業大学と野村総合研究所が連携協定を締結

$
0
0

東京工業大学と野村総合研究所が連携協定を締結
~サイバーセキュリティ分野で世界をリードする研究・教育を推進~

東京工業大学と株式会社野村総合研究所(代表取締役社長:此本臣吾、以下「NRI」)は、4月28日に、「NRI・東工大サイバーセキュリティ教育研究共創プログラム(以下、「本プログラム)」に関する連携協定を締結しました。

野村総合研究所 此本臣吾 代表取締役社長(左)と三島良直学長(右)
野村総合研究所 此本臣吾 代表取締役社長(左)と三島良直学長(右)

この協定は、2016年4月から2年間にわたり、東京工業大学とNRIが、「サイバーセキュリティ」に関する研究・教育の推進を図ることを目的としています。本プログラムを通じて両者で共同研究を行うとともに、NRIグループ等からも講師を派遣する「サイバーセキュリティ特別専門学修プログラム」を開設し、高度なサイバーセキュリティ人材の育成を推進します。

本プログラムの特徴

インターネットに代表される、情報通信ネットワークの整備、および、情報通信技術の高度な活用の進展とともに、サイバーセキュリティに対する脅威も深刻化しています。サイバー攻撃による個人情報や知的財産の流出は、社会に対して重大な影響を及ぼし続けています。日本経済団体連合会から「サイバーセキュリティ対策の強化に向けた提言」(2015年2月17日)が出されていますが、その中で、現在わが国で大きく不足するサイバーセキュリティ人材の育成に関して企業と大学の連携が重要、と述べられています。

こうした社会的要請を背景に、本プログラムでは、東京工業大学とNRIとがサイバーセキュリティ分野の共同研究の実施と、NRIが長年の経験で得た実践的なサイバーセキュリティ攻撃に対する防御技術を提供する形で学生の教育を推進します。

また、東京工業大学は、NRIと連携する本プログラムをコアとし、楽天、NTT、産業技術総合研究所の協力も得て、東京工業大学情報理工学院に「サイバーセキュリティ特別専門学修プログラム」を2016年4月に開設しました。

連携の背景

東京工業大学では昨年4月に、情報セキュリティの分野で産学官の連携研究を推進する母体となり、企業ニーズ等に対応することを目的とした「サイバーセキュリティ研究推進体」を学内に設置し、連携先を模索していました。一方NRIは、新しい社会のパラダイムを洞察しその実現を担う「未来社会創発企業」として、IT(情報技術)分野をはじめとする先進的サービスを提供していくことを経営の基本としています。情報セキュリティ分野に関しては、「NRIセキュアテクノロジーズ」という専門会社をグループ内に有しており、昨今、サイバー攻撃やその被害が急増するなか、高度なセキュリティ人材の教育と防御技術の研究のパートナーを求めていました。

志を同じくする両者が、世界をリードするサイバーセキュリティ人材の教育と先端的な研究を実践的に大きく進めていくために、今回の協定締結に至ったものです。

連携する分野

NRI・東工大サイバーセキュリティ教育研究共創プログラムを設置し、以下の2分野で、連携を推進します。

  • サイバーセキュリティ攻撃に対する防御技術の研究
  • サイバーセキュリティ攻撃に関する高度な専門性を備えた人材の育成(教育)

連携を通じて実施していく事項

共同研究

サイバーセキュリティ分野において、攻撃手法の解析を行うとともに、攻撃からの防御を行うためのツール・技法・実用化手法などに関する技術的研究を進めていきます。

人材教育

修士課程、博士後期課程、または専門職学位課程に在籍する学生を対象に、サイバーセキュリティ特別専門学修プログラムとしてNRIグループ社員が講師となる次の2科目を開講します。

1.
サイバーセキュリティ攻撃・防御第一(2単位)
2.
サイバーセキュリティ攻撃・防御第三(2単位)

情報理工学院

情報理工学院 ―情報化社会の未来を創造する―
2016年4月に新たに発足した情報理工学院について紹介します。

情報理工学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

国立大学法人東京工業大学 広報センター 武田

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975

株式会社野村総合研究所
コーポレートコミュニケーション部 潘

Email : kouhou@nri.co.jp
Tel : 03-6270-8100


シリコン基板の上に半導体レーザ―150℃の低温で異なる基板を接合、大規模光集積回路に道―

$
0
0

概要

東京工業大学工学院電気電子系の西山伸彦准教授らは、従来の手法より低い温度で、異なる材料を糊剤なしで接合するプラズマ活性化接合[用語1]を利用して、シリコン基板上に半導体レーザを実現することに成功した。これによりCMOS電子回路[用語2]プロセスを利用した大規模シリコン光集積回路の作製に威力を発揮する。シリコンはその物理的性質上、効率よく発光することができず、光源を一括集積する手法の開発が課題となっていた。

研究成果

半導体レーザ構造を結晶成長技術によりInP基板[用語3]上に形成した基板と、SOI(Silicon on Insulator)基板[用語4]を用意し、2つの基板に真空チャンバ中で窒素プラズマを照射した。その後150℃で2つの基板を貼り付けることにより、ハイブリッド基板を作製した。この150℃という接合温度は、従来の水分子を利用して接合する親水化接合に比べて半分以下の温度であり、これにより熱膨張係数差(熱により物体が膨張する度合いの差)による接合基板へのストレス低減が期待できる。またこの接合温度でも、その後の作製に十分な接合強度を有することができる。

このようにして作製したハイブリッド基板を加工して、半導体レーザを作製した。初期的な実験としてSOI基板に光回路を形成しないものを利用したレーザでは、室温において発振動作を実現し、しきい値電流[用語5]64mA、しきい値電流密度850A/cm2を実現することに成功した。次にSOI基板に光回路を形成したものにおいても、同様に発振動作を達成した。シリコンリング共振器[用語6]をハイブリッド領域の前後に配置することによって、リング共振器の共振波長に一致した波長でのレーザ発振を得た。

研究の背景

IoT(Internet of Things)、ビックデータや人工知能などの高度なデータ処理技術は、データセンターやスーパーコンピュターの発展に立脚している。これらの発展のためには、個々の部品の高速化とともに並列化技術が重要である。これまで部品やボード、ラックをつなぐ配線には電気配線が利用されてきたが、伝送帯域拡大を目指して光配線への置き換えが進み、将来的には、チップの直近まで光が浸透することが予想されている。この実現のためには、電子回路チップに利用されている材料であるシリコンとの親和性を担保しながら、大規模性を有する光集積回路を作製するシリコンフォトニクス[用語7]呼ばれる技術が注目されている。

しかしながら、シリコンは間接遷移半導体[用語8]であり、電流を注入しても効率よく発光することができず、光源を実現することが困難である。これに対し、従来の半導体レーザで利用されているIII-V族半導体[用語9]、特にInP材料を異種材料接合技術を利用してシリコン基板に形成する技術が注目されており、いかに大規模でそれぞれの材料の物性を変化させることなく形成するかをポイントに研究が進められてきた。

今後の展開

今後は、さらなる低温(室温)にて接合できる技術を利用してハイブリッド半導体レーザを実現すべく、研究を進めている。将来的には電子回路チップの直近に本技術を用いた大規模光集積回路を集積することが可能になるであろう。

ハイブリッド基板の光学顕微鏡写真と断面電子顕微鏡写真

図1. ハイブリッド基板の光学顕微鏡写真と断面電子顕微鏡写真

作製したリング共振器装荷型ハイブリッド半導体レーザ

図2. 作製したリング共振器装荷型ハイブリッド半導体レーザ

用語説明

[用語1] プラズマ活性化接合 : 真空の空間に置いた2つの基板にプラズマを照射し、表面の不純物を取り除き、表面を活性化した状態(物質をくっつきやすい状態)にして接合する手法

[用語2] CMOS電子回路 : CMOS(Complementary Metal-oxide-semiconductor: 相補型金属半導体酸化膜)トランジスタを利用したゲート構造の組み合わせで構成される電子回路。一般的なデジタル回路の基本構成。

[用語3] InP基板 : インジウムと燐の化合物で構成される単結晶でできた半導体基板のこと。この上に積層される材料により光ファイバ通信で主に利用される赤外線を発光する半導体レーザが作製できる。

[用語4] SOI基板 : シリコン単結晶基板の上に絶縁物である石英があり、さらにその上にシリコン層がある構造の基板。もともと電子回路で電子を絶縁物で閉じ込めるために作られた基板であるが、近年光回路用の基板としても多く利用されるようになった。

[用語5] しきい値電流 : レーザ発振動作を開始する電流値のこと。この電流以下では発光ダイオード(LED)として動作している。

[用語6] リング共振器 : リング形状の光が伝搬する導波路をつくり、その周回長さに応じた光の波長を通したり止めたりできる部品のこと。

[用語7] シリコンフォトニクス : CMOS電子回路で利用されているシリコン材料を利用して光部品を実現する技術。CMOS作製技術を利用し、高精度、大規模に部品を形成することができる。また、光学特性においてはシリコンをSiO2で包み込んだ構造にすることでおおきな屈折率差をとることができるため、光が強くシリコンに閉じ込められ、従来に比べて小型の部品サイズを実現することができる。

[用語8] 間接遷移半導体 : 半導体中の電子や正孔(+の電荷をもつ粒子のようなもの)は、結合してそのエネルギーの差が光となるが、構成する原子の性質上、結合しにくく、高効率に発光できない半導体のこと。一方で直接遷移半導体と呼ばれる種類の半導体は、結合しやすいため、高効率に発光できる。直接遷移半導体は、III-V族半導体に多い。

[用語9] III-V族半導体 : 原子周期表におけるIII族原子とV族原子の組み合わせで結晶ができる半導体のこと。主に利用されている材料はGaAs(ガリウム砒素)やInPである。これらの材料は直接遷移半導体であるため、光分野でレーザなどの光源材料として利用される。

論文情報

掲載誌 :
Japanese Journal of Applied Physics, 52, 060202 (2013).
論文タイトル :
Low Threshold Current Density Operation of a GaInAsP/Si Hybrid Laser Prepared by Low-Temperature N2 Plasma Activated Bonding
著者 :
Yusuke Hayashi, Ryo Osabe, Keita Fukuda, Yuki Atsumi, JoonHyun Kang, Nobuhiko Nishiyama and Shigehisa Arai
DOI :

工学院

工学院 ―新たな産業と文明を拓く学問―
2016年4月に新たに発足した工学院について紹介します。

工学院

学院・系及びリベラルアーツ研究教育院outer

問い合わせ先

工学院電気電子系
准教授 西山伸彦
Email : nishiyama@ee.e.titech.ac.jp
Tel / Fax : 03-5734-3593

東工大教員8名が平成28年度科学技術分野の文部科学大臣表彰で「若手科学者賞」を受賞

$
0
0

このたび、東工大教員8名が、平成28年度科学技術分野の文部科学大臣表彰において「若手科学者賞」を受賞しました。

「若手科学者賞」は、萌芽的な研究、独創的視点に立った研究等、高度な研究開発能力を示す顕著な研究業績をあげた40歳未満の若手研究者を対象としています。

科学技術分野の文部科学大臣表彰には、「若手科学者賞」の他に、特に優れた成果をあげた者を対象とする「科学技術特別賞」、顕著な功績をあげた者を対象とした「科学技術賞」等があり、「科学技術賞」でも本学から4名の教員が受賞しました。

「若手科学者賞」を受賞した東工大関係者は以下のとおりです。

青野真士 地球生命研究所 特任准教授

受賞業績:粘菌アメーバに着想を得た革新的コンピュータの研究

青野真士 特任准教授
青野真士 特任准教授

現在のデジタル計算機は、安定な素子を用い高速で正確な演算を行う情報処理系であり、プログラムや事前知識が与えられない状況には対応できません。それとは異なる方式で情報を処理する生物や自然現象に学んだ革新的計算原理が求められていました。私は、単細胞アメーバ生物・粘菌の時空間ダイナミクスを利用して組合せ最適化計算を行う実験系を開発し、これをモデル化した解探索アルゴリズムを定式化しました。さらに、このモデルを物理的相互作用や確率的揺らぎを生じるナノデバイスを利用して実装できる事を示しました。本研究成果は、膨大な候補の中から条件を満たす解を効率的に発見したり、自然現象の大規模シミュレーションを実行できる小型・低消費エネルギーの計算機の開発と、社会生活や学術研究に影響を与える革新的計算パラダイムの開拓に寄与することが期待されています。

今回の受賞は、私と私を支えて下さった共同研究者の皆様にとって、大きな意味を持っていると考えます。これまでは、粘菌アメーバとコンピュータという一見関連のなさそうな概念をつなげようとする研究に対し、面白そうだけれども実現性に関しては疑問符を感じるという捉えられ方をすることがよくありました。しかし、ソフトウェアだけではなく、ソフトウェアと連携して革新的なハードウェアを開発する、という方向性を真剣に追求するには、粘菌アメーバのような比較的単純なアーキテクチャの生物から学んだ計算原理を探ることが理に適っていると信じ、研究を進めて参りました。そうした研究をこのたび文部科学省から正当に評価していただけたことを大変うれしく思います。これを機に、これまでとは違った期待を受けることを喜び、日本から革新的ハードウェアによるイノベーションを生み出すため、さらに邁進していきたいという思いを新たにしております。

雨宮智宏 科学技術創成研究院 助教

受賞業績:メタマテリアルを用いた新機能発現とそのデバイス応用の研究

雨宮智宏 助教
雨宮智宏 助教

工学的に重要な分野において、メタマテリアルの導入を行うことに取り組んでまいりました。

特に、光通信で一般的に使用されている光集積回路にメタマテリアルを応用することを目指して、小型光変調器などをはじめとした各種デバイスの研究を推進しております。

この度は、本活動に対しこのような栄誉ある賞を賜ることができ身に余る光栄に存じます。

これもひとえに学内外関係者の方々のご支援によるものであり、この場をお借りして心より御礼申し上げます。

稲木信介 物質理工学院 准教授

受賞業績:電極電子移動を基軸とする高分子材料開発に関する研究

稲木信介 准教授
稲木信介 准教授

次世代の電子材料候補として、軽く、柔軟な有機材料の需要が高まっており、特に高分子の新規分子設計、機能化方法の開発が望まれています。東工大に着任して以来、「電子を試薬とする電極反応」に魅せられ、電極電子移動に基づく導電性高分子の機能化に関する研究を推進してまいりました。

また、電極電位分布を自在に制御し、高分子膜に転写する画期的な手法を開発し、傾斜機能表面などの創出にも成功しています。

今回、このような栄誉ある賞を受賞することができ、大変光栄に存じます。研究室学生を含む共同研究者、学内外関係者の方々のご支援に厚く御礼申し上げます。

また、本研究業績は、「東工大挑戦的研究賞」ならびに「研究の種発掘」支援により得られたものであり、この場をお借りして感謝申し上げます。

鷹谷絢 理学院 准教授

受賞業績:高周期14族元素配位子を用いた効率的分子変換反応の研究

鷹谷絢 准教授
鷹谷絢 准教授

新しい分子の創製は、化学研究の醍醐味の一つです。我々は、ケイ素やゲルマニウムなどの高周期14族元素を配位子として持つ新しい遷移金属錯体を設計・合成し、これらを触媒として利用することで、これまで困難だった分子変換を可能にする新しい合成反応の開発を目標に研究を行ってきました。

その結果、二酸化炭素や不飽和炭化水素分子を有用有機化合物へと効率的に変換できる新しい合成反応を種々実現するとともに、従来の金属触媒とは一線を画するユニークな触媒機能を解明することができました。

今後も、独自の分子触媒で切り拓く新しい合成化学を目指し、研究に励んで行きたいと思います。

本研究は、本学岩澤伸治教授のご指導の下、多くの本学学生・博士研究員の方々と行ってきたものです。

素晴らしい共同研究者達に恵まれたおかげで、お互い切磋琢磨しながら、研究を楽しむことができたと感じています。この場を借りて改めて感謝いたします。 

田原麻梨江 科学技術創成研究院 准教授

受賞業績:弾性波動を利用した生体組織の非侵襲的硬さ計測に関する研究

田原麻梨江 准教授
田原麻梨江 准教授

生体組織に対して外部加振によって振動を励起し、発生した振動特性を計測すると硬さを推定することができます。硬さから病変組織を診断する新規手法について、定量性を向上する手法の確立、新規手法を生体組織に適用する際の安全性の確立、また、内視鏡へ適用するための小型化に関する基礎技術を確立してきました。

この度は、このような名誉ある賞を受賞することができ光栄に思います。受賞することができましたのも学生時代からこれまで指導して下さった方々があってのことです。この場を借りてお礼申し上げます。

まだまだ勉強不足ではありますが、これを励みに世の中に役立つ成果がでるよう、研究活動を続けてまいりますので今後ともご指導ご鞭撻の程、宜しくお願い申し上げます。

前田和彦 理学院 准教授

受賞業績:太陽光と水から水素を製造する半導体光触媒の研究

前田和彦 准教授
前田和彦 准教授

受賞対象となった私の研究は、太陽光エネルギーを吸収して水を分解し水素を製造する、「光触媒」と呼ばれる魔法の粉を開発するというものです。水素はクリーンエネルギーキャリアとして近年その重要性が増しており、地球上に豊富な水と無尽蔵な太陽光エネルギーから作り出すことができれば大変魅力的です。特に粉末状の光触媒が使えれば、太陽光が降り注ぐ広大な面積にも展開できる可能性があり、将来的な実用化への道筋も見えてきます。

私は、これまでに報告されていない、すなわち地球上に存在しない人工化合物に着目して研究を進め、オキシナイトライドとよばれる材料群が太陽光水分解に有効な光触媒となることを明らかにしました。さらには、光触媒上で起こる表面反応促進に着目することで、最終的には、緑色植物の光合成に匹敵する太陽光エネルギー変換効率を人工系ではじめて実現することに成功しました。

水の可視光分解を目指した半導体光触媒および助触媒材料の開発
水の可視光分解を目指した半導体光触媒および助触媒材料の開発

受賞にあたり、関係者の皆様には厚く御礼を申し上げます。特に、学生時代に指導してくださった堂免一成先生(東京大学教授)、原亨和先生(本学教授)、難しい局面で一緒に頭を悩ませ議論してくださった共同研究者の皆様、そして日々支えてくれた家族・友人らに感謝いたします。今回の受賞を励みとして、今後も研究・教育活動に励んで参ります。

松石聡 元素戦略研究センター 准教授

受賞業績:機能性電子化物および酸水素化物の研究

松石聡 准教授
松石聡 准教授

近年、希少金属の代替を目指した「元素戦略」の研究が多く行われています。本研究の狙いはさらに一歩進んで、資源的に豊富で環境負荷の小さな元素のみを 使って、これまでにない新しい機能物質を設計することです。

そこで、着目したのは結晶中の原子ではなく、それらの間の空隙でした。カルシウム、アルミニウムおよび酸素という地球上に豊富にあり、ごくありふれた元素から成る金属酸化物結晶(セメント原料、電気を通さない絶縁体)の中の隙間に電子を包接させることで金属伝導性と電子を放出しやすい、低仕事関数という新機能を付与することに成功しました。また、宇宙で最もありふれた元素である水素を陰イオンとして取り込ませることで酸化物に高濃度の電子を注入し、その電子伝導性を制御できることを実証しました。

本受賞は、共同研究者である本学のスタッフや学生、および学内外の関係者のご支援、協力によるものです。この場をお借りして心より感謝申し上げます。今後は、本研究で示された物質設計指針を実際に役に立つ材料の実現につなげていきたいと考えております。

村岡貴博 生命理工学院 助教

受賞業績:生体から着想した刺激応答性機能性分子開発に関する研究

村岡貴博 助教
村岡貴博 助教

タンパク質などの自然界に存在する生体分子は、多様かつ高度な構造と機能に満ちており、生物学者に限らず、有機合成化学者にとっても魅力的なものであります。私は、こうした生体分子に見られる構造や機能から着想した全く新しい機能性分子を開発してまいりました。

機械的運動を行うタンパク質から着想した分子機械や、細胞膜で物質透過を担う膜タンパク質の立体構造を模倣した超分子イオンチャネルなどが代表例です。今後も「自然から着想した機能性分子開発」というコンセプトのもと、一層、研究に邁進してまいりたいと思います。

最後に、本受賞はひとえに学内外の関係者、学生、共同研究者の方々のご協力によるものでございます。この場をお借りして心より感謝申し上げます。

「分子で分子を動かす」ことに合成分子で初めて成功した「キラル分子ハサミ」

図1:
「分子で分子を動かす」ことに合成分子で初めて成功した「キラル分子ハサミ」

光に応答したアゾベンゼン部分で生じる伸縮運動が、軸回転、開閉運動へと変換され、非共有結合で連結されたビイソキノリンの軸回転を引き起こす。タンパク質分子機械に見られる「分子間での動きの連動」を合成分子で初めて実現した。

図2:膜タンパク質の立体構造を模倣した超分子イオンチャネル

図2:
膜タンパク質の立体構造を模倣した超分子イオンチャネル

親水部(青部)と疎水部(赤部)の繰り返し構造を持つ分子が脂質二分子膜中で複数回膜貫通型構造を形成し、その四量化により超分子イオンチャネルが形成される。

関連リンク

お問い合わせ先

広報センター

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975

東工大教員4名が平成28年度科学技術分野の文部科学大臣表彰で「科学技術賞」を受賞

$
0
0

このたび、東工大教員4名が、平成28年度科学技術分野の文部科学大臣表彰において「科学技術賞」を受賞しました。

「科学技術賞」は科学技術分野で顕著な功績をあげた者を対象としたもので、「開発部門」、「研究部門」、「科学技術振興部門」、「技術部門」、「理解増進部門」に分かれて表彰されています。

日ごろの研究活動、研究成果を認められ、本学からは「研究部門」で2名、「理解増進部門」で2名が受賞しました。

科学技術分野の文部科学大臣表彰には、「科学技術賞」の他、特に優れた成果をあげた者を対象とする「科学技術特別賞」、高度な研究開発能力を有する若手研究者を対象とした「若手科学者賞」等があり、「若手科学者賞」でも本学から8名の教員が受賞しました。

「科学技術賞」を受賞した東工大関係者は以下のとおりです。

科学技術賞(研究部門)

岩澤伸治 理学院 教授

受賞業績:遷移金属触媒を用いる二酸化炭素の再資源化反応の研究

岩澤伸治 教授
岩澤伸治 教授

二酸化炭素を炭素資源として再利用し、有用な有機化合物へと変換する方法の開発は、化石資源の枯渇の問題に対する一つの解決策となりうるものです。しかし二酸化炭素は反応性が低く、効率の良い触媒的な二酸化炭素固定化反応の開発研究は、これまで立ち後れていました。

我々は、独自の遷移金属錯体触媒の創製、ならびに新たな触媒系の構築に基づいて、入手が容易な有機分子と二酸化炭素を直接反応させ、有用な化合物へと変換することのできる効率の良い反応を開発し、二酸化炭素の再資源化への道を切り拓くことに成功しました。

本研究により、ベンゼンやトルエンなどの原油にも含まれる芳香族炭化水素や不飽和炭化水素を直接二酸化炭素と反応させるなど、従来困難であった触媒的二酸化炭素固定化反応を種々実現することができました。今後さらに新しく効率の良い二酸化炭素の資源化反応を開発していきたいと考えています。

ロジウム触媒を用いるベンゼンと二酸化炭素からの安息香酸の合成
ロジウム触媒を用いるベンゼンと二酸化炭素からの安息香酸の合成

これらの成果は、なかなか思うように期待する反応が進まない中、粘り強くさまざまな試行錯誤を繰り返し、新たな可能性を見出してくれた学生の皆さんの献身的な努力なしには、なし得なかったものであり、研究室の皆さんに心から感謝したいと思います。

山田功 工学院 教授/学術国際情報センター長

受賞業績:非拡大写像の不動点表現に基づく信号処理に関する先駆的研究

山田功 教授
山田功 教授

信号処理は観測データから価値の高い情報を推定するための基幹技術として、古くはユークリッドの時代から現代に至るまで、常に強力な数理と共に発展し、今やほとんどの計測システムや情報通信システムに応用されています。現代の信号処理技術の多くは、ガウスの「最小二乗推定」やフーリエの「直交関数展開」の戦略を踏襲しており、「(線形代数で学んだ)部分空間を用いた情報表現」と「直交射影定理(ヒルベルト空間に拡張されたピタゴラスの定理)」を共通の土台としています。私たちは「部分空間では表現できない情報を精密表現する数理」と「最適化の数理」の融合が生む相乗効果こそが信号処理を飛躍的に進化させる鍵となることを確信し、この方針を土台に据えた普遍的アルゴリズムの開発を目標にしています。

凸解析学の目覚ましい進化のおかげで、「表現の困難さ故に、信号処理や逆問題の分野で効果的に活用されることのなかった重要な情報」の多くが、実は「非拡大写像の不動点集合(全ての不動点からなる集合)」として統一表現可能であることが解ってきました(図1、図2参照)。

図1:「非拡大写像の不動点表現に基づく信号処理」の例
図1:「非拡大写像の不動点表現に基づく信号処理」の例

図2:本研究が活用する非拡大写像とその不動点集合
図2:本研究が活用する非拡大写像とその不動点集合

本研究で開発された「ハイブリッド最急降下法」は、「不動点理論の数理」と「凸最適化の数理」の融合の賜物であり、世界で初めて「非拡大写像の不動点集合上の凸最適化問題」の解決に成功した汎用アルゴリズムです (図1)。さらに、このアイディアを大胆に拡張することによって、「適応射影劣勾配法」を開発し、「凸関数列の漸近的最小化問題」を解決することにも成功しています。これらは非拡大写像の不動点表現に潜む驚異的な情報表現能力を丸ごと信号処理機能に活かすための基幹アルゴリズムとなっており、数多くの逆問題や適応信号処理問題やオンライン学習問題に応用され、優れた性能が実証されています。

このたびは、長年取り組んできた研究を高く評価していただき、大変光栄です。一緒に研究してきた研究室の学生諸君や共同研究者の方々の多大な御協力に深く感謝しています。長い信号処理の歴史の中で本研究の真価が試されるのはまだまだこれからですが、ようやくスタート地点に立つことができたように感じています。これからも信号処理、最適化、逆問題の領域でよい研究ができるよう一層楽しんで参りたいと思っています。

科学技術賞(理解増進部門)

受賞業績:「プログラミングを用いた理科教育実践による小学生の理解増進」

研究概要

情報通信技術(ICT)が日々発展する昨今、プログラミング教育の低年齢での導入が計画されるなか、児童の科学的論理的思考を育むためにどのような役割を担うのか検討することは必要不可欠です。本理解増進では、小学校の理科でプログラミングを用いることを前提に、児童によるプログラミングを教科教育の活動の一部として取り込んだ授業を展開しました。

本活動は、児童の「科学的な仕組みへの深い理解」「モデル化とシミュレーションによる問題解決力の育成」「論理的思考能力の育成」など、理数系の深い理解と学ぶ力の獲得に寄与しています。

小学校高学年授業風景
小学校高学年授業風景

「てんびんのつりあい」のシミュレーション(小学6年生)
「てんびんのつりあい」のシミュレーション
(小学6年生)

「きりんの足の動き」の再現(小学2年生)
「きりんの足の動き」の再現
(小学2年生)

受賞者

西原明法 工学院 特任教授

栗山直子 リベラルアーツ研究教育院 助教

齊藤貴浩 大阪大学経営企画オフィス 教授 (元 本学大学院社会理工学研究科 連携准教授(2016年3月まで))

西原明法 工学院 特任教授

西原明法 特任教授
西原明法 特任教授

大田区教育委員会や大田区立清水窪小学校等のご協力により進めている、私達の取り組みを評価していただいて大変光栄です。今後このプログラミング教育を他の多くの小学校にも展開し、さらなる理解増進を図りたいと考えています。

また、この学習をした児童達が科学への興味を持ち続け、将来社会に貢献してくれることを期待しています。

栗山直子 リベラルアーツ研究教育院 助教

栗山直子 助教
栗山直子 助教

このたびの表彰は、大田区立清水窪小学校の児童の皆様、校長先生や諸先生方、実践授業の際に手助けをいただきましたすべての皆様のご協力、ご支援の賜物です。心より感謝申し上げます。

今後も科学的な根拠に基づく効果的な教育方法を実践し、その普及を目指して精進してまいりたいと思っています。

この取り組みを開始する際にご指導をいただいた東京工業大学名誉教授鈴木正昭先生に深く感謝するとともに、東京工業大学基金:日本再生プロジェクトのご支援に感謝いたします。

関連リンク

お問い合わせ先

広報センター

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975

ニュースレター「AES News」No.5 2016春号発行

$
0
0

科学技術創成研究院 先進エネルギー国際研究(AES)センターouterは、このほど季刊誌「AES News」No.5 2016春号を発行しました。

本学では、2016年4月1日付けで研究体制が刷新され、新たに科学技術創成研究院(IIR)が誕生しました。このIIRのもとには6つの研究所・センターが置かれ、そのひとつが旧ソリューション研究機構AESセンターを母体とする、本AESセンターです。

AESセンターは、従来の大学研究の枠組みを越え、低炭素社会の要となる再生可能エネルギーや省エネを極限まで取り込んだ先進エネルギーシステム実現に向けて、企業や行政等が対等な立場で参加する開かれた研究拠点「イノベーションプラットフォーム」を目指しています。

同センターでは、前身組織がその活動をより多くの方々にご理解いただき、企業、自治体会員および本学教職員の連携を深めるために年4回発行していたニュースレター「AES News」を引き継ぎ、今回通算で第5号となる2016春号を発行しましたのでご案内します。

ニュースレター「AES News」No.5 2016春号

第5号・2016春号

  • 科学技術創成研究院 益一哉院長ごあいさつ
    新たな教育研究体制
  • AES活動報告(2016年1月~3月)
  • AESの取り組みに対するアンケート結果
  • 「発電機群の起動停止シミュレータの構築と解析」参加募集
  • 2016年度の活動概要 他

ニューレターの入手方法

PDF版
冊子版
  • 大岡山キャンパス:東工大百年記念館1階 閲覧コーナー
  • すずかけ台キャンパス:すずかけ台大学会館1階 広報コーナー

お問い合わせ先

科学技術創成研究院 先進エネルギー国際研究(AES)センター

Email : aescenter@ssr.titech.ac.jp
Tel : 03-5734-3429

東京工業大学とみらい創造機構 社会連携活動の推進に向けた組織的連携協定を締結

$
0
0

国立大学法人東京工業大学(学長:三島良直、以下「東工大」)と株式会社みらい創造機構(代表取締役:岡田祐之、以下「みらい創造機構」)は、大学での研究成果を社会に一層生かすため、組織的な連携協力に関する協定を5月13日に締結しました。

写真左より:みらい創造機構代表取締役 岡田祐之、三島良直学長、みらい創造機構取締役会長 安達俊久
写真左より:みらい創造機構代表取締役 岡田祐之、三島良直学長、みらい創造機構取締役会長 安達俊久

東工大では本年4月より教育、研究の両面において大胆な改革を開始しており、これらの成果を社会や経済システムに還元し、社会の課題・要請に迅速に応える産学連携活動の一層の強化に取組んでいます。みらい創造機構は、新規事業創出と育成支援に多くの実績を持ち、東工大ともこれまで共同研究・学術指導の推進、人材教育支援、ベンチャー育成支援等を行ってきました。

今回の協定により、両者の協働活動を一層強化し、大学の技術・人材を活用したベンチャー創出・育成のプラットフォームの構築に加え、産学連携、国際協働活動、起業家教育等を組織的に推進していきます。特に、卓越したリーダーの下で、先端的な研究を推進する東工大の新たな研究体制「研究ユニット」の仕組みを活かし、社会的要請を踏まえた新たな研究ユニットの創成・運営に取り組むとともに、海外企業、大学、研究所での国際産学連携を推進していきます。

東工大との連携活動を加速・充実させるために、みらい創造機構は東工大関連ベンチャーを中心に投資するベンチャーキャピタルファンドの組成を準備中です。ファンド組成の暁には、東工大の未公開発明の早期開示を基に、技術系ベンチャーの創出を加速する取組みをともに積極的に推進していきます。

研究ユニット:卓越したリーダーの下で、“尖った”研究を小規模なチームで機動的に推進する仕組み。原則として設置期間は5年、具体的なミッションを定め、その実現を図る。本年4月付けで10個の研究ユニットが設置されている。

お問い合わせ先

東京工業大学 広報センター

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975

みらい創造機構 広報担当

Email : contact@miraisozo.co.jp
Tel : 03-6311-6958

生命理工学の面白さを語る~動画「生命の真理を探り、新たなものを作り出す」~

$
0
0

東工大の生命理工学院では、複雑で多様な生命現象を理解しようとする研究から、ライフサイエンスとテクノロジーの知識を駆使した工学的な研究に至るまで、幅広く行われております。

大隅良典栄誉教授が行うオートファジーの研究もその一つです。オートファジーとは、一言で言えば、細胞内で自分自身のタンパク質が分解される仕組みのことです。最近では、オートファジーの機能をコントロールできれば神経疾患などの治療に役立つこともわかってきており、この分野の研究に力が注がれています。

こうした功績が認められ、大隅栄誉教授は2015年にカナダのガードナー国際賞および国際生物学賞を受賞しました。ガードナー国際賞は、医学に対して顕著な発見や貢献を行ったものに与えられる学術賞で、医学に関する賞として最も顕著な賞の一つです。また、国際生物学賞は、生物学の奨励を図ることを目的として昭和天皇の在位60年を記念して創設され、生物学の研究において優れた業績を挙げ、世界の学術の進歩に大きな貢献をした研究者に授与されます。これらの受賞を記念して2015年11月に開かれた講演会では、大隅栄誉教授の他に、生命理工学の分野で研究を進めている以下4人の研究者が、各々の講演テーマに沿って生命理工学の面白さを高校生たちに伝えました。

  • 大隅良典 栄誉教授(科学技術創成研究院):「酵母から始まったオートファジー研究 ~生命科学研究の楽しさ~」
  • 二階堂雅人 准教授(生命理工学院):「進化する分子進化学」
  • 秦猛志 准教授(生命理工学院):「化学合成による創薬」
  • 粂昭苑 教授(生命理工学院):「幹細胞生物学(ES細胞とiPS細胞)」
  • 黒川顕 特任教授(生命理工学院):「バイオインフォマティクスと未来社会」

その様子を動画にまとめましたので、ぜひご覧ください。

生命理工学院

生命理工学院 ―複雑で多様な生命現象を解明―
2016年4月に新たに発足した生命理工学院について紹介します。

生命理工学院

学院・系及びリベラルアーツ研究教育院outer

国際ワークショップ「日本―スイス研究協力による医用工学イノベーションの創出」開催報告

$
0
0

東京工業大学(以下「東工大」)、東京医科歯科大学(以下「医科歯科大」)、スイス連邦工科大学ローザンヌ校(以下「EPFL」)は医用工学分野での国際共同研究とイノベーションの創出についての議論を深めるため、4月19日に医科歯科大で3大学共同ワークショップを開催しました。

東工大とEPFLは、昨年6月にEPFLで共同ワークショップを行っており、今回が2回目の開催となります。今回のワークショップではテーマが医用工学ということから、医科歯科大にも参加いただき、3大学から関連の各3名、合計9名が研究成果、及びその成果の実用化についての発表を行いました。東工大からは、工学院機械系の土方亘准教授と松浦大輔助教、科学技術創成研究院の西迫貴志助教(開催当時・現准教授)が登壇しました。

また、東工大・医科歯科大の双方の成果を活用するリバーフィールド株式会社の発表もあり、最先端の技術と医療の融合についての有意義な会合となりました。

医科歯科大 生体材料工学研究所 宮原所長 開会挨拶
医科歯科大 生体材料工学研究所
宮原所長 開会挨拶

EPFL ブロイラー教授
EPFL ブロイラー教授

工学院 機械系 土方准教授
工学院 機械系 土方准教授

ワークショップでは、手術用ロボット、ウェアラブル、バイオセンサー等医用工学分野の広範囲な最先端の技術と医療への応用について発表が行われました。各発表後や休憩時間には講演者に熱心な質問が寄せられ、活発な議論が交わされました。

ワークショップに引き続き情報交換会を開催し、講演者、企業や3大学の関係者が意見交換を行い、懇親を深めるとともに、今後の活動に関する打合せを行いました。

質疑応答
質疑応答

大竹副学長 閉会挨拶
大竹副学長 閉会挨拶

懇親会
懇親会

今後、理工系総合大学である東工大とEPFL、医療系総合大学である医科歯科大がそれぞれの特色を生かした協力関係を構築することで新たな国際共同研究への道筋をつけ、また、3大学と日本や欧州の企業が協業することで、新たな国際産学連携プロジェクトやイノベーションの創出に繋がることを期待しています。

工学院

工学院 ―新たな産業と文明を拓く学問―
2016年4月に新たに発足した工学院について紹介します。

工学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

東京工業大学 研究戦略推進センター

Email : ru.staff@jim.titech.ac.jp
Tel : 03-5734-3790


がんの悪性度を検知する「ナノマシン造影剤」を開発

$
0
0

発表のポイント

  • がんの内部で、治療抵抗性を持つ悪性度の高いがん細胞が存在する「腫瘍内低酸素領域[用語1]」を臨床で普及したMRIにより高感度で可視化できる「ナノマシン造影剤[用語2]」の開発に成功しました。
  • ナノマシン造影剤は、既存のMRI造影剤より腫瘍のみを検出する特異性や検出感度に優れ、1.5 mmの微小な転移したがんを高感度で検出することができました。
  • ナノマシン造影剤は、がんの早期発見、転移を見つけること、治療効果を予測すること、治療効果判定への応用が期待でき、将来的に見落としの無い確実性の高いがん診断と治療が可能になることが期待されます。

発表概要

東京工業大学科学技術創成研究院の西山伸宏教授(ナノ医療イノベーションセンター主幹研究員)、ナノ医療イノベーションセンター 片岡一則センター長(東京大学政策ビジョン研究センター 特任教授)と米鵬主任研究員、量子科学技術研究開発機構 青木伊知男チームリーダーらは、がん内部の微小環境で悪性度や治療抵抗性に関する「腫瘍内低酸素領域」を高感度でMRIにより可視化できるナノマシン造影剤を開発しました。がん内部の低酸素領域には薬剤が十分に届きにくく、また放射線治療の効果も低くなるなど治療への抵抗性を示し、より悪性度の高いがんに変化して転移を引き起こす原因領域とされ、注目されています。開発したナノマシン造影剤は、がん組織の微小環境を検知して、MRIの信号強度を増幅するこれまでに無い機能を有しており、既存のMRI造影剤よりも優れた腫瘍特異的イメージングを可能にすることを研究チームは明らかにしました。また、ナノマシン造影剤を利用することにより、直径わずか1.5 mmの肝臓へ転移した微小な大腸がんを高感度で検出することにも成功しています。このようにナノマシン造影剤は、臨床で広く利用されている生体検査と比べて極めて低侵襲的で、体内のあらゆる臓器・組織に適用できる「イメージングによる病理診断技術」としての実用化が期待されます。また、ナノマシン造影剤は、治療において、治療前の効果の予測や治療後の迅速効果判定にも応用でき、将来的には、見落としの無い確実性の高いがん診断を可能にし、先手を打った、より確実な治療が可能になるものと期待されます。

発表内容

MRIは、放射線を使わず、磁石により体内を画像化する体に優しい診断装置です。高解像度の断層イメージングが可能で、国内で6000台程度が稼動するなど広く普及しています。日本国民の死因の第一位である悪性腫瘍(がん)のMRI診断においては、高感度化、がん組織の検出力(特異性)の向上、診断情報の高度化(微小環境の変化など)が望まれており、そのための技術開発が世界中で行われています。MRI装置の開発が進められる一方で、安全で、より高機能な造影剤の開発が、近年強く求められています。このような背景において、研究チームは、生体に対して安全で、がん組織での低pH環境に応答して溶解する「リン酸カルシウムナノ粒子」にMRI造影効果を有するマンガン造影剤を搭載したナノマシン造影剤を開発しました。このナノマシン造影剤は、造影剤を内包した内核が、生体適合性に優れた高分子材料の外殻で覆われています。ナノマシン造影剤は、血流中の環境(pH 7.4)では安定ですが、腫瘍内の低pH(6.5-6.7)においてpHに応じてマンガン造影剤をリリースします。加えて、ナノ粒子から放出したマンガン造影剤が、がん組織でのタンパク質と結合することによって、信号が約7倍に増幅する性質があります。これらの結果より、ナノマシン造影剤は、腫瘍の内部のpH(6.5-6.7)の僅かな変化に応答して、MRI信号を変化させる特性を有するものと研究チームは考えました。

そこで、ナノマシン造影剤をがん細胞の皮下移植モデルマウスに投与し、MRI計測を行ったところ、投与30分で腫瘍全体が造影され、時間の経過とともに腫瘍中心部の信号強度が増大することが確認されました(図1)。このMRI信号強度の変化は、臨床で広く利用されている造影剤(マグネビスト、Gd-DTPA)による信号強度変化よりもはるかに大きく、ナノマシン造影剤の固形がんのイメージングにおける有用性が示されました。また、腫瘍中心部で信号が顕著に増大する部分は、組織切片の免疫染色の結果から、がんの「低酸素領域(Hypoxia)」と一致し、加えて、がんの内部で乳酸が溜まる部位とも一致していたことから、ナノマシン造影剤は腫瘍内の僅かなpH変化を可視化し、結果として「低酸素領域を高感度かつ高精度でイメージングできる」ことが明らかになりました(図2)。さらに、このナノマシン造影剤をわずか1.5mmの小さな大腸がんの肝転移[用語3]モデルにおいてMRIで計測したところ、既存の肝がん用MRI造影剤でもあるプリモビストよりも優れた検出力を示すことが明らかになりました(図3)。低酸素領域は、抗がん剤治療や放射線治療に対して抵抗性を示すことが知られており、がんの内部に低酸素領域を持つかどうかを調べることは、治療方針の決定や治療効果の検証に大変重要です。現在の医療では、がん内部に低酸素領域を持つかどうかを調べることは一般的ではなく、検査法も放射線被ばくを伴う解像度の低い方法しかありませんでした。本開発により、悪性度の高いがん細胞が潜む低酸素領域を、放射線被ばくなく、高い解像度で三次元的に解析する手段が得られ、今後、がんの性質を見極める高度な診断や、効果を確認しながら治療や創薬を進める新しい医療の形成が期待できます。

ナノマシン造影剤は、現在のMRI造影剤よりも高いコントラストでがんの検出を可能にします。さらにがんの内部の悪性度の高い領域で、より高い信号になり、がん内部の構造や特徴に関する情報を付加します。
図1.
ナノマシン造影剤は、現在のMRI造影剤よりも高いコントラストでがんの検出を可能にします。さらにがんの内部の悪性度の高い領域で、より高い信号になり、がん内部の構造や特徴に関する情報を付加します。
ナノマシン造影剤はMRIでがんを検出するだけでなく、その内部構造や悪性度の診断にも役立つ可能性があります。ナノマシン造影剤はがん組織の中でも、特に悪性度の高いとされる低い酸素濃度や低pHの領域で信号が上がり白くなりました。この効果は安価な低磁場MRIでより強くなるため、臨床現場に存在するMRI装置が活用でき、がんの悪性度や治療抵抗性の診断に役立つと考えられます。
図2.
ナノマシン造影剤はMRIでがんを検出するだけでなく、その内部構造や悪性度の診断にも役立つ可能性があります。ナノマシン造影剤はがん組織の中でも、特に悪性度の高いとされる低い酸素濃度や低pHの領域で信号が上がり白くなりました。この効果は安価な低磁場MRIでより強くなるため、臨床現場に存在するMRI装置が活用でき、がんの悪性度や治療抵抗性の診断に役立つと考えられます。
ナノマシン造影剤は、正常な肝臓では信号低下を生じ、肝臓がんでは高信号が得られたため、コントラストが非常に高くなり、肝臓へ転移した1.5 mmの微小な大腸がんを検出することができました。
図3.
ナノマシン造影剤は、正常な肝臓では信号低下を生じ、肝臓がんでは高信号が得られたため、コントラストが非常に高くなり、肝臓へ転移した1.5 mmの微小な大腸がんを検出することができました。

今回得られた結果に関して、重要なこととして、臨床で最も広く普及している、比較的安価な低磁場1テスラMRIにより得られたものであり、高価で導入台数の少ない高磁場MRIを必要としないことが挙げられます。本ナノマシン造影剤は、低磁場のMRI装置において、特に優れた信号上昇を示すことも示されています。ナノマシン造影剤は「いつでも、どこでも、だれでも」利用でき、病変部位の検出の高感度化と診断情報の高度化を可能にする革新的MRI造影剤として今後の展開が期待されます。

なお、本研究は、国立研究開発法人科学技術振興機構(JST)の研究成果展開事業「センター・オブ・イノベーション(COI)プログラム」の支援によって行われました。

用語説明

[用語1] 腫瘍内低酸素領域(Hypoxia) : がん細胞の無限増殖やアポトーシス(機能的な細胞の自然死)の回避等に代表されるがんの特性は、がん細胞の増殖速度と腫瘍血管の形成速度とのアンバランスを引き起こします。結果として、悪性腫瘍の内部には、十分な酸素が供給されない低酸素領域が生じます。また、腫瘍の増殖に遅れて構築される腫瘍血管は正常組織のそれと比較して脆弱であり、かつ遮断や逆流を繰り返すため、腫瘍血管の近傍にも一過性の低酸素環境が生じることが知られています。この様な低酸素環境にあるがん細胞は一般的に抗がん剤に抵抗性を示します。また、エックス線やガンマ線の殺細胞効果は酸素の存在に強く依存することから、低酸素環境にあるがん細胞は放射線治療にも抵抗性を示すことが報告されています。さらに、低酸素環境にあるがん細胞は運動・遊走能(移動能力)を高めることによって劣悪な環境からの回避を図り、これががんの転移・浸潤能の高めることにつながると言われています。そして、がんの低酸素環境は、がんの治療に関してとても重要です。

[用語2] ナノマシン造影剤 : ナノマシン造影剤は、がん組織での低pH環境に応答して溶解する「リン酸カルシウムナノ粒子」にMRI造影剤を搭載したナノマシン造影剤です。このナノマシン造影剤は、造影剤を内包した内核が、生体適合性に優れた高分子材料の外殻で覆われています。ナノマシン造影剤は、血流中の環境(pH7.4)で安定に保持でき、腫瘍内のpH(6.5-6.7)においてpHに応じてマンガンイオンをリリースします。加えて、ナノ粒子から放出したマンガンイオンが、がん組織でのタンパク質と結合することによって、分子の動きが制限され信号が約7倍に増幅する性質があります。これらの結果より、ナノマシン造影剤は、腫瘍の内部のpH(6.5-6.7)の僅かなpHの変化に応答して、MRI信号を変化させる特性をもつことが示されました。ナノマシン造影剤は、がん診断、特に微小な転移がんの発見に役立ち、更に腫瘍内の低酸素領域をMRIで高解像度の検査ができ、治療方針の決定や治療の効果判定に役立つと考えられます。

[用語3] 肝転移 : 肝転移とは、肝臓以外の臓器にできたがん(原発巣)が肝臓に転移したものを意味します。ほぼすべてのがんにおいて、肝臓へ転移する可能性がありますが、実際には消化器系がん(大腸がん、胃がん、膵がんなど)、乳がん、肺がん、頭頸部のがん、婦人科(子宮や卵巣)のがん、腎がんなどが肝臓への転移を認めることが多いとされています。また、がんの死因の中で、90%は転移がんによる死因です。

論文情報

掲載誌 :
Nature Nanotechnology
論文タイトル :
A pH-activatable nanoparticle with signal amplification capabilities for non-invasive imaging of tumour malignancy
著者 :
Peng Mi, Daisuke Kokuryo, Horacio Cabral, Hailiang Wu, Yasuko Terada, Tsuneo Saga, Ichio Aoki*, Nobuhiro Nishiyama*, Kazunori Kataoka*
*責任著者)
DOI :

Nature Nanotechnologyについて

Nature Nanotechnologyは、Nature Publishing Groupが発行しているナノテクノロジーに関する専門誌で、2006年に創刊されました。インパクト・ファクターは34.048(2015年発表)でナノサイエンス・ナノテクノロジーの分野では1位の学術誌として高い評価を得ています。

Nature Nanotechnologyouter

問い合わせ先

公益財団法人 川崎市産業振興財団
ナノ医療イノベーションセンター
センター長 片岡一則

Email : k-kataoka@kawasaki-net.ne.jp
Tel : 044-589-5812

ナノマシン造影剤に関して

東京工業大学 科学技術創成研究院 化学生命科学研究所
教授 西山伸宏

Email : nishiyama@res.titech.ac.jp
Tel : 045-924-5240

MRIに関して

量子科学技術研究開発機構・放射線医学総合研究所
チームリーダー 青木伊知男

Email : fmit3@qst.go.jp
Tel : 043-206-3272

その他に関する事項

公益財団法人 川崎市産業振興財団 COINS支援事務局
松枝温子

Email : jimukyoku-coins@kawasaki-net.ne.jp
Tel : 044-589-5785

細く、しなやかな人工筋肉の大学発ベンチャーを設立

$
0
0

細く、しなやかな人工筋肉の大学発ベンチャーを設立
―福祉介護パワースーツ、人型ロボット用キーデバイスとして開発、販売へ―

東京工業大学と岡山大学の両大学発ベンチャー企業s-muscle(エスマスル)が4月1日に誕生し、空気圧で動作する細径人工筋肉の販売を開始します。

今回販売を開始した細径人工筋肉は、外径が2~5mmと従来の人工筋肉に比べてはるかに細くしなやかなため(従来市販されているものは外径が10~40mm程度)、これを筋繊維として編み込むことで、軽く、柔らかく着心地のよい介護福祉用サポートスーツやコルセットの実現が期待できます。また、人間と同じようななめらかな動きを行う人型ロボットや超軽量ロボットなど、新しいロボット、福祉機器のブレイクスルーとなり得ます。

7月より人工筋肉のユーザーメーカーや研究機関にサンプル出荷を開始し、用途開拓と実用化を進め、来年度を目標にネット販売を通じた一般の小口ユーザーへの販売も始める計画です。

開発の背景

2011年より、鈴森康一教授(岡山大学(当時)、2014年度より東京工業大学)、脇元修一准教授(岡山大学)、ならびに池田製紐所が協力してマッキベン型人工筋肉[用語1]の研究開発を開始し、細く、しなやかな人工筋肉の開発に成功しました。

その後、東京工業大学と岡山大学が共同で細径人工筋肉の基礎特性と応用に関する研究を進めていましたが、アパレル、福祉介護用具、ロボットを扱う多くの企業や研究者から、この人工筋肉を使いたいとの要望を受け、4月1日に、東京工業大学と岡山大学発ベンチャーとしてs-muscleを設立し、細径人工筋肉の設計、製造、販売、用途開拓を開始しました。

細径人工筋肉の概要

人工筋肉の研究開発にはいくつかの方式がありますが、s-muscleが開発したのはマッキベン型と呼ばれるものです。従来にない、細く、しなやかで、軽く、力の強い人工筋肉で、この特徴を利用すれば、人と接する柔らかな機械や新しいロボット機構など、様々な用途が期待できます。

販売する細径人工筋肉の例

外径は2~5mm、収縮率[用語2]は20~25%、最大収縮力[用語3]は1cm2あたり約30kgfです。
複数の人工筋を束ね、様々な形状の筋肉が構成できます。

販売する細径人工筋肉の例

サポートスーツへの応用

布状に織ることで、柔らかく、軽く、着心地の良いパワースーツやサポータへの応用を目指します。

サポートスーツへの応用

ロボットへの応用

超軽量/長尺ロボット、人間型筋骨格ロボット、ソフトロボットなど、新しいロボットへの応用が可能です。

ロボットへの応用

今後の展開

サポートスーツ、福祉介護用具、ロボットへの細径人工筋肉の応用を検討するメーカーや研究機関に対して、7月より機能検証用人工筋肉のサンプル出荷を開始します。外径2mm、2.5mm、4.8mmの3タイプを用意し、人工筋肉単体、アセンブル品、駆動装置等、要望に応じた形で販売をします。s-muscleでは、顧客企業、東京工業大学、岡山大学で共同して、細径人工筋肉の設計、開発、用途開拓を進めます。営業、製造など業務の一部は池田製紐所とコガネイに委託します。2017年春には安価な普及用人工筋肉の提供を予定しており、顧客メーカーや研究機関と協力して、細径人工筋肉を用いたサポートスーツ、福祉介護用具、ロボット等の普及に努めます。また、一般の小口ユーザーにもネット販売を開始し、この人工筋肉の普及を図る予定です。

s-muscleの会社概要

社名 :
株式会社s-muscle(エスマスル)
設立日 :
平成28年4月1日
所在地 :
岡山県倉敷市児島唐琴2丁目4番24号
事業内容 :
人工筋肉の設計、製造、販売、用途開拓、技術コンサルティング
資本金 :
81万円
役員 :
代表取締役 鈴森康一(東京工業大学 工学院 教授)
取締役 脇元修一(岡山大学 大学院自然科学研究科 准教授)、清板祝士、河野一俊
監査役 清板雅史
主要株主 :
鈴森康一、脇元修一、株式会社池田製紐所、株式会社コガネイ

用語説明

[用語1] マッキベン型人工筋肉 : ゴムチューブの外周にメッシュを編んだ構造で、ゴムチューブ内部に空気を送ることで軸方向に収縮する。原理は1960年頃に米国で開発され、現在、複数のメーカーが製造している。マッキベン型のほかに、高分子材料を使ったものや静電気力を使ったものなど、種々の人工筋肉が研究されているが、その中でマッキベン型人工筋は唯一実用レベルの力や収縮力が得られている。

[用語2] 収縮率 : 人工筋の収縮した長さを、人工筋肉の元の長さで割った値。例えば、長さ100mmの人工筋肉が収縮して75mmになる場合、収縮量は25mmなので、収縮率は25%となる.一般的には収縮率が大きいほどよい性能といえる。

[用語3] 最大収縮力 : マッキベン型人工筋肉の収縮力は、人工筋肉の伸び量によって変わり、最も伸びた状態で最大の力となる。このときの収縮力を最大収縮力という。最大収縮力は人工筋肉の断面積によって変わり、1cm2あたり約30kgfの力がでる。例えば外径2.5mmの人工筋肉の断面積は約0.5cm2なので、発生する最大収縮力は約15kgfとなる(kgfとは日常でkgと呼ばれる単位と同じ)。

工学院

工学院 ―新たな産業と文明を拓く学問―
2016年4月に新たに発足した工学院について紹介します。

工学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

東京工業大学 広報センター

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

岡山大学 広報・情報戦略室

Email : www-adm@adm.okayama-u.ac.jp
Tel : 086-251-7292 / Fax : 086-251-7294

株式会社 s-muscle

Email : contact@s-muscle.com
Tel : 086-477-5566 / Fax : 086-477-4156

単分子レベルで金属―分子界面の完全解明に世界で初めて成功

$
0
0

要点

  • 単分子レベルで金属と分子の界面の状態を決定する手法を世界で初めて開発
  • 分子素子の実現に一歩近づき、既存の有機デバイスの性能向上にも威力

概要

東京工業大学理学院の小本祐貴博士後期課程2年、藤井慎太郎特任准教授、木口学教授らは、単分子接合[用語1]における金属と分子界面の原子構造・電子状態を決定する手法を開発した。単分子接合に与える電圧を変えながら流れる電流(I-V特性)[用語2]を計測することで得られる、界面に関する複数の状態の情報を基に、それぞれの状態の界面構造、電子構造を決定した。その結果、同じ単分子でありながら、界面の構造に応じて伝導度が最大2桁も異なることを明らかにした。

研究成果は5月25日発行のNature Publishing Group「Scientific Reports」に掲載された。

背景

単分子に素子機能を賦与する単分子素子は、究極の微小サイズの電子素子[用語3]を実現できるので、次世代の電子デバイスとして注目を集めている。これまで様々な分子を用いて、単分子素子の基本要素となる単分子接合が作製され、その伝導度が決定されてきた。最近では、トランジスタ、ダイオード、スイッチ特性などの機能性単分子接合に関する研究も多数報告されている。しかしながら、実験の再現性が低いため、単分子素子実用化のめどは立っていない。実用化にむけた最大の課題は、単分子接合が「ブラックボックス」で、特に物性に決定的な役目を担う金属と分子の接合界面の状態がきちんと解明できていないことにある。

研究成果

金属―分子界面の状態の解明にむけ、小本らは単分子接合を流れる電流の電極間電圧依存性(I-V特性)に注目し、計測技術および高度情報処理を融合させた独自の計測・解析手法を開発することで、単分子接合のI-V計測そして接合界面状態の決定に成功した。

単分子接合およびベンゼンジチオール(BDT)単分子接合の電流―電圧特性の例

図1. 単分子接合およびベンゼンジチオール(BDT)[用語4]単分子接合の電流―電圧特性の例

図2には1000個のベンゼンジチオール(BDT)分子接合について計測したI-V特性を示す。図2(a)では3つ、図2(b)では1つ、計4つの状態が分離して観測された。得られたI-V特性から、金属と分子の波動関数の重なり(Γ)とエネルギー差(ε0)、架橋分子数(n)を求めたところ、4状態のうち中間の2状態は架橋分子数1と2の状態に対応し、単分子接合としては3状態に分類出来ることが分かった。図2(c, d)には波動関数の重なりΓとエネルギー差ε0の分布を示すが、3状態は主に界面における金属と分子の波動関数の重なりが異なっている。

単分子接合およびベンゼンジチオール(BDT)単分子接合の電流―電圧特性の例

図2. (a,b)BDT単分子接合の電流―電圧特性の分布 (c,d)波動関数の重なりおよびエネルギー差の分布

並行してモデルクラスタを用いた理論計算により、単分子接合の電気伝導度、波動関数の重なり(Γ)、エネルギー差(ε0)の3つの物性量を求めた。実験結果と比較することで、図2で観測されたHの状態はBDT分子における硫黄原子が2つの金原子の間(bridge)に、Mの状態は硫黄原子が3つの金原子の間(hollow)に、Lの状態は硫黄原子がAu原子の直上(on-top)に吸着していることがそれぞれ明らかとなった。BDT単分子接合の伝導度はH状態が0.4M(メガは100万)、M状態が8M、L状態が40Mオームである。界面構造のわずかな差が伝導度を最大二桁も大きく変化させることが明らかとなった。

BDT単分子接合の構造モデル。図2のH, M, Lはそれぞれbridge, hollow, on-topに対応する。

図3. BDT単分子接合の構造モデル。図2のH, M, Lはそれぞれbridge, hollow, on-topに対応する。

今後の展開

本研究によりこれまでブラックボックスであった単分子接合における界面構造、そして電子状態を明らかにすることが可能になり、界面構造に応じて単分子接合の伝導性が大きく変化することも明らかとなった。今後、適切な金属―分子接続部位を開発することで伝導度揺らぎの少ない単分子接合を作製し、揺らぎを低減することで単分子素子実用化が近づくことになる。また、金属と有機物の界面における電子輸送は、単分子接合に限らず、有機トランジスタ、有機ELなど有機エレクトロニクス全般の重要なテーマである。本研究で得られた分子スケールでの局所界面構造と電子輸送特性の関係は、これらデバイス開発にも貴重な指針を与えることが期待される。

用語説明

[用語1] 単分子接合 : 金属電極間に単分子を架橋させた構造体を意味する。単分子接合に機能を賦与することで分子デバイスとなる。単分子接合では、分子が2カ所で金属電極と接続しているため、界面において電荷移動、軌道混成がおこり、分子は孤立分子や結晶とは異なった振る舞いをするようになる。

[用語2] I-V特性 : 導体を流れる電流(I)と導体両端の電位差(V)の関係を意味する。単分子接合のI-V特性は、伝導度に加え、界面における金属と分子の波動関数の重なり、そのエネルギー差について、従来の単なる伝導度計測とはけた違いに多くの情報を与える事が理論提案されている。

[用語3] 電子素子 : 電子回路を構成するダイオードやトランジスタなどの部品を意味する。

[用語4] ベンゼンジチオール(BDT) : ベンゼン環のパラ位の2つ水素原子がチオール(-SH)基で置換された分子である。ベンゼンジチオールのチオール基が金電極と結合することで、分子接合を形成する。チオール基と金電極が強く結合することから、分子接合を形成するモデル分子として知られている。

論文情報

掲載誌 :
Scientific Reports
論文タイトル :
Resolving metal-molecule interfaces at single-molecule junctions
著者 :
Yuki Komoto1, ShintaroFujii1, Hisao Nakamura2, Tomofumi Tada3, Tomoaki Nishino1 and Manabu Kiguchi1
所属 :
1Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8511, Japan,
2Nanosystem Research Institute (NRI) 'RICS', National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan,
3Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259-S2-13 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
DOI :

理学院

理学院 ―真理を探究し知を想像する―
2016年4月に新たに発足した理学院について紹介します。

理学院

学院・系及びリベラルアーツ研究教育院outer

問い合わせ先

東京工業大学 理学院化学系
特任准教授 藤井慎太郎

Email : fujii.s.af@m.titech.ac.jp

教授 木口学

Email : kiguti@chem.titech.ac.jp
Tel / Fax : 03-5734-2071

取材申し込み先

東京工業大学 広報センター

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

東工大の研究成果を応用し、大型有機ELパネルの効率的な量産に貢献

$
0
0

東工大の研究成果を応用し、大型有機ELパネルの効率的な量産に貢献
―AGC旭硝子、C12A7エレクトライドのスパッタリングターゲット材を量産開始―

東京工業大学と旭硝子株式会社(以下、AGC旭硝子)は、本学 科学技術創成研究院の細野秀雄教授の研究グループが開発した「C12A7エレクトライド(C12A7:e-)」を用いて均一な非晶質薄膜を共同開発しました。AGC旭硝子は、これを量産するために必要なスパッタリングターゲット材の工業化と商業生産を開始しました。

C12A7エレクトライドのスパッタリングターゲット材
図1. C12A7エレクトライドのスパッタリングターゲット材

C12A7はアルミナセメントの構成成分の一つで、内径0.4nm[用語1]程度の籠状の骨格が面を共有して繋がった構造をしており、この籠には酸素イオンが含まれています。細野教授の研究グループはこの籠中の酸素イオンをすべて電子で交換し、金属のように電気をよく流し、電子を外部に極めて与えやすい性質を持ちながら化学的にも熱的にも安定で容易に取り扱うことができる、「C12A7エレクトライド」を開発しました。また、アモルファス非晶質C12A7エレクトライドも作製できることを示し、特徴的な性質も保持されていることを見出しました。

C12A7(12CaO・7Al2O3)結晶
図2. C12A7(12CaO・7Al2O3)結晶

現在、有機ELディスプレイの電子注入材料には、フッ化リチウム(LiF)や、アルカリ金属をドーピングされた有機材料が用いられていますが、これらは不安定な物質あるいは状態で使われています。そこで細野教授の研究グループとAGC旭硝子の研究グループは、より安定した「非晶質C12A7エレクトライド薄膜」を開発しました。AGC旭硝子の研究グループが開発したターゲット材を用いた、室温のスパッタリング工程[用語2]から得る事のできる、非晶質C12A7エレクトライド薄膜は、可視域で透明で、容易に電子を放出し、しかも化学的に安定しているというユニークな特徴をもっています。これに細野教授の研究グループが開発した透明非晶質酸化半導体(TAOS[用語3])を用いたn-チャンネルのTFT素子を組み合わせる事で、デバイス構造として有利な逆構造型でも、駆動電圧の低い電子輸送層を、安定して高い歩留りで製造する事ができるようになります。TAOS-TFTは大型の有機ELパネルの駆動に適していますが、その性能を生かす逆構造の実現に必要な電子注入層と輸送層として、うまく機能する物質がありませんでした。今回の成果により、酸化物TFTで駆動する有機ELパネルの製造が大幅に改善できることが期待できます。

従来品との比較
図3. 従来品との比較

なお、本成果は、以下の事業・研究開発課題の一環として得られました。

国立研究開発法人科学技術振興機構 戦略的創造研究推進事業 ACCEL 

  • 研究開発課題名
    :「エレクトライドの物質科学と応用展開」
  • 研究代表者
    :東京工業大学 細野秀雄
  • プログラムマネージャー
    :横山壽治
  • 共同研究機関
    :旭硝子(株)
  • 研究開発期間
    :2013年10月~2018年3月

用語説明

[用語1] nm : ナノメートル、1/1000ミクロン。

[用語2] スパッタリング工程 : 真空チャンバー内に薄膜としてつけたい金属をターゲットとして設置し、高電圧をかけてイオン化させた希ガス元素(普通はアルゴンを用いる)や窒素(普通は空気由来)を衝突させる。するとターゲット表面の原子がはじき飛ばされ、基板に到達して製膜することが出来る。 原理も単純であり「スパッタ装置」として各種あることから、様々な技術分野で広く使われている。 最近では、高品質の薄膜が要求される半導体、液晶、プラズマディスプレイ、光ディスク用の薄膜を製造する手法として用いられている。

[用語3] TAOS : Transparent Amorphous Oxide Semiconductor. In-Ga-Zn-Oから成るIGZOはその一つ。

お問い合わせ先

広報センター

E-mail : media@jim.titech.ac.jp
Tel : 03-5734-2975

TBSテレビ「未来の起源」に小畠・三重研究室の水口佳紀大学院生が出演

$
0
0

本学、生命理工学院小畠・三重研究室の博士後期課程2年 水口佳紀さんが、TBS「未来の起源」に出演します。「再生医療・組織工学に用いる温度応答性タンパク質ゲル」の研究について紹介されます。

小畠英理教授
小畠英理教授

水口佳紀さん
水口佳紀さん

水口佳紀さん コメント

テレビで若手研究者が取り上げられるという機会はあまりないため、今回私たちの研究に着目していただき大変うれしく思っております。今回開発した材料は未来を変える可能性のある魅力的な性質をもった材料ではありますが、まだ基礎研究段階であり、こういった研究成果は社会に出してこそ価値があるものですので、いち早く臨床応用といった次のステップに進めることができるよう、今後の研究に取り組んでいきたいです。

  • 番組名
    「未来の起源」
  • 放送日
    TBS: 6月5日(日) 22:54~23:00
    (再放送)BS-TBS: 6月12日(日) 20:54~21:00

問い合わせ先

東京工業大学 広報センター

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975

科学技術創成研究院 細胞制御工学研究ユニット キックオフシンポジウム開催報告

$
0
0

科学技術創成研究院 細胞制御工学研究ユニットは、4月16日、すずかけ台キャンパスにて設立記念(キックオフ)シンポジウムを開催し、学内外より80名の参加がありました。

田口英樹教授による開会の挨拶
田口英樹教授による開会の挨拶

シンポジウムは、ユニットリーダーである大隅良典栄誉教授が本研究ユニットの概要説明を行うことから始まりました。本研究ユニットは、生命の基本単位である細胞について学内外の先進的な研究者を結集し、細胞レベルの生命現象の解明において国際的に先端的な研究を進めるとともに、細胞を利用した創薬、医療などに貢献できるよう基礎研究の成果を社会還元することも目指します。

次に、三島良直学長から、平成28年度にスタートした東京工業大学の組織改革の概要や研究ユニットへの期待が話されました。

大隅良典栄誉教授
大隅良典栄誉教授

三島良直学長
三島良直学長

引き続き、細胞制御工学研究ユニットの教員が、それぞれの持ち時間30分間で各研究室の研究概要や今後の抱負について講演しました。各教員の研究テーマは以下の通りです。

  • 大隅良典栄誉教授:オートファジーの生理機能
  • 田口英樹教授:細胞内蛋白質の一生、新生鎖の生物学
  • 岩崎博史教授:染色体ダイナミズムの時空間制御の分子メカニズム
  • 駒田雅之教授:増殖因子受容体の分解による細胞増殖・がん化の分子機構
  • 木村 宏教授:生細胞・生体内のエピジェネティクス動態制御
  • 加納ふみ准教授:細胞編集技術と次世代イメージング画像解析技術を用いた細胞機能制御機構の研究

各講演の後の質疑応答の時間には、来場者から多数の質問が出て、本研究ユニットの研究に対する興味の高さが感じられました。

本シンポジウムは研究ユニットの見学会も兼ねていましたので、研究講演の後、細胞制御工学研究ユニットが入っているS2棟(フロンティア研究棟)の研究室に移動して、施設見学を行いました。

施設見学会の後には、すずかけ台キャンパスのカフェ・モトテカにて懇親会が催され、益一哉科学技術創成研究院長、三原久和生命理工学院長の挨拶ののち、参加者間で熱い議論が交わされました。

地球の内核は7億歳?地球冷却の歴史の一端が明らかに―地球中心核条件下での鉄の電気伝導度測定に成功―

$
0
0

要点

  • 地球中心核に相当する高温高圧下における鉄の電気伝導度測定に成功した
  • 地球中心核の電気・熱伝導度はこれまでの予想よりも3倍程度高い
  • 内核の冷却速度を計算した結果、内核の年齢は約7億歳であり、地球の誕生時期46億年前よりもはるかに若い

概要

東京工業大学の太田健二講師、廣瀬敬教授と、愛媛大学の桑山靖弘助教、大阪大学の清水克哉教授ならびに高輝度光科学研究センターの大石泰生副主席研究員の共同研究チームは、大型放射光施設SPring-8[用語1]を利用して、地球中心核[用語2]の主成分である鉄の電気伝導度を最高157万気圧、4,500ケルビン(絶対温度、K)という超高温超高圧条件で測定し、地球中心核の電気・熱伝導度が従来の予想よりも3倍程度高いことを明らかにしました。

地球の中心部は固体金属内核とその外側の液体金属外核の2層構造になっている非常に高温高圧の領域です。地球内部の熱が地表へと移動することで地球内部の温度は徐々に低下し、それに伴い内核はその大きさを増しています。また、外核が対流することで、地球には約42億年前から磁場が存在していると考えられています。では、内核が何年前に誕生したのか、内核の存在が地球の磁場に影響を与えるのかどうかを知るためには鉄の伝導度[用語3]を実験によって明らかにすることが必要です。しかし、外核の最上部ですら135万気圧、4,000 K以上の超高温高圧状態であるため、こうした極限条件において物質の伝導度を計測することは技術的に困難でした。

共同研究チームは、鉄試料を高温高圧状態で保持できるレーザー加熱式ダイヤモンドアンビルセル装置[用語4]を用いて、SPring-8において、地球中心核条件に相当する高温高圧下で鉄の電気伝導度を測定することに成功しました。その結果、核の熱伝導度はこれまでの予想よりも3倍程度高い約90 W/m/K(ワット毎メートルケルビン)程度であり、核の熱・電気伝導は非常に活発であることが明らかになりました。核の伝導度から推定される内核の誕生年代は約7億年前となり、40億年以上前から存在することが確認されている地球磁場の生成・維持機構に関する新たな知見を与える結果です。本研究成果は国際科学雑誌『Nature』に6月1日に掲載されました。

背景

地球の中心は、圧力360万気圧、温度5,000 K超の極限的な環境にあり、地球中心から地表面までの距離約6,400 kmにおいて巨大な熱の流れを生み出しています。この大きな熱勾配は地球外核とマントルの対流を引き起こし、地球磁気圏の生成やプレート運動などの地球のダイナミズムの原動力となっています。また、約46億年前の地球が出来た当初は高温のために存在しなかった固体金属内核も地球内部の温度が下がることによって、ある時期に誕生し、現在も成長を続けています。そのような地球内部の熱・構造進化は地球の冷却の歴史にほかなりません。地球の内部を構成する物質の熱伝導度(熱の伝わりやすさ)を知ることで、地球がどのくらいの速度で冷えているのかが推定できます。従って、核の冷却史を調べるためには核の主成分である鉄の伝導度の情報が必要です。古くは1940年代から核の伝導度の推定は行われてきましたが、その推定値には大きなばらつきがありました。2012年頃に理論計算[用語5]によって地球中心核の電気・熱伝導度の見積もりがなされ、核の伝導度がこれまでの予想よりもはるかに高いことが示唆されていましたが、実際の核の温度圧力条件における実験による検証はなされていませんでした。この検証のためには実際の核の温度圧力条件における鉄の伝導度の直接測定が必要です。金属の場合、電気と熱は共に自由電子によって運ばれるために、鉄の電気伝導度を測定することで熱伝導率を算出することも可能です。しかし、核に相当する圧力を実験室で再現しようとする場合、試料の大きさは直径30ミクロン以下と非常に小さくなってしまうため、極小試料の電気伝導度を測定することは非常に困難でした。

研究手法と成果

研究グループはまず、高温高圧発生装置であるダイヤモンドアンビルセルの内部に、微細な電気抵抗測定用回路を作成するための技術開発を行いました。収束イオンビーム(FIB)加工装置[用語6]を用いることで、高圧装置内部に非常に細かな電気配線加工が可能になりました。その結果、200万気圧を超える高圧力、4,500 Kの高温条件での鉄の電気伝導度測定実験が可能となりました。

SPring-8の高圧構造物性ビームライン BL10XUに設置されたレーザー加熱システムを使用し、約157万気圧、4,500 Kまでの条件での実験から純鉄の電気伝導度を決定しました。また、BL10XUのX線マイクロビームを使用したX線回折像から鉄試料の結晶構造と実験圧力条件を決定しています。

この実験によって決定された純鉄の電気伝導度から見積もった核の電気・熱伝導度は約90 W/m/K程度であり、最近の理論計算[用語5]によって報告されている高い核の伝導度を支持する結果です。本研究で得られた核の熱伝導率を用いて、核の冷却速度の計算を行った結果、予想される内核形成開始年代はおよそ7億年となっています。古地磁気測定から、約42億年前から地球には磁場が存在し、約13億年前に磁場強度が増大したと報告されていますが、この磁場強度の増大は内核の誕生に起因するものではないことを本研究結果は示唆しています。また、内核が存在しなかった30億年以上の期間にどのようなメカニズムで地球の磁場が維持されてきたのか再考する必要があるでしょう。

今後の期待

地球中心核には鉄の他に水素やケイ素などの軽元素が含まれていると考えられており、これらの軽元素が鉄の伝導度を大きく変える可能性があります。今回用いた高温高圧下での純鉄の電気伝導度測定手法はその他の核候補合金に対しても適用可能です。核の伝導特性が明らかになることで、地球磁場の成因である地球ダイナモのメカニズムや、地球形成初期の地球内部の温度状態も明らかになっていくものと期待できます。

用語説明

[用語1] 大型放射光施設SPring-8 : 兵庫県の播磨科学公園都市にある世界最高の放射光を生み出す理化学研究所の施設で、その運転管理は高輝度光科学研究センターが行っています。SPring-8の名前はSuper Photon ring-8GeVに由来。放射光とは、電子を光とほぼ等しい速度まで加速し、電磁石によって進行方向を曲げた時に発生する、細く強力な電磁波のことです。SPring-8では、この放射光を用いて、ナノテクノロジー、バイオテクノロジーや産業利用まで幅広い研究が行われています。

[用語2] 地球中心核 : 地球の中心から半径3500 kmの領域で、固体金属からなる内核と液体金属からなる外核で構成されています。地球中心核の外側をマントル、地殻が取り囲んでいます(下図を参照)。主成分である鉄の他に少量のニッケルと軽元素(水素、炭素、酸素、珪素、硫黄)が含まれていると考えられていますが、詳細な化学組成は不明です。液体外核の対流によって地球磁場が生じていると考えられています。

地球中心核

[用語3] 鉄の伝導度 : 金属では、電気と熱は共に金属中の自由電子によって運ばれます。そのため、金属の電気伝導度(σ)と熱伝導度(κ)、絶対温度(T)の間にはヴィーデマン-フランツ則(κ = L0σT、L0は定数)とよばれる関係があります。

[用語4] ダイヤモンドアンビルセル装置 : ダイヤモンドを用いた小型の高圧装置(図A)。ダイヤモンドは圧力を発生させる尖頭状の部品(アンビル)として用いられています(図B)。ガスケットと呼ばれる金属の板に小さな穴をあけ、その穴に試料と圧力媒体を入れて2つのダイヤモンドアンビルで挟み込むことで高圧を発生させます。ダイヤモンドの先端のサイズを小さくすることで、地球中心部に相当する圧力(約360万気圧)の発生が可能です。

ダイヤモンドアンビルセル装置

[用語5] 論文情報 : Pozzo et al., Thermal and electrical conductivity of iron at Earth's core conditions. Nature 485, 355-8 (2012)、及び、de Koker et al., Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth's core. Proc. Natl. Acad. Sci. U.S.A. 109, 4070-4073 (2012).

[用語6] 収束イオンビーム(FIB)加工装置 : ガリウムイオンを電界で加速したビームを数ナノメートルまで細く絞り、微細加工、蒸着、観察などを行う装置。

論文情報

掲載誌 :
Nature(出版元:Nature Publishing Group)
論文タイトル :
Experimental determination of the electrical resistivity of iron at Earth's core conditions
著者 :
Kenji Ohta1*, Yasuhiro Kuwayama2, Kei Hirose3,4, Katsuya Shimizu5, and Yasuo Ohishi6
所属 :
1 東京工業大学 理学院 地球惑星科学系、2愛媛大学 地球深部ダイナミクス研究センター、3東京工業大学 地球生命研究所、4海洋研究開発機構 海洋地球生命史研究分野、5大阪大学 大学院基礎工学研究科附属極限科学センター、6高輝度光科学研究センター
*Corresponding author
DOI :

理学院

理学院 ―真理を探究し知を想像する―
2016年4月に新たに発足した理学院について紹介します。

理学院

学院・系及びリベラルアーツ研究教育院outer

問い合わせ先

理学院 地球惑星科学系
講師 太田健二

Email : k-ohta@geo.titech.ac.jp
Tel : 03-5734-2590

取材申し込み先

東京工業大学 広報センター

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

6月2日15:15 用語2の説明を修正しました。

カラー画像と近赤外線画像を同時に撮影可能なイメージングシステムを開発―次世代画像センシングに向けオリンパスと共同開発―

$
0
0

要点

  • カラー画像と近赤外線画像を同時に撮影可能なイメージングシステムを開発―次世代画像センシングに向けオリンパスと共同開発―
  • 撮像データをリアルタイムで処理する画像処理システムの開発
  • カラー画像と近赤外線画像を同時に撮影可能なプロトタイプシステムの開発

概要

国立大学法人東京工業大学工学院 システム制御系の奥富正敏教授らと、オリンパス株式会社技術開発部門は、カラー画像と近赤外線画像を1つの撮像素子で同時に撮影可能なイメージングシステムのプロトタイプを開発した。

近年、カラー画像と近赤外線画像を利用したコンピュータビジョンおよび画像処理技術応用の発展が著しく、これらの画像を同時に取得したいという要望が高まっている。本システムでは、可視光(カラー情報)と近赤外光を同時に撮像可能な撮像素子および撮像データをリアルタイムで処理する画像処理システムを開発することで、1つの撮像素子によるカラー画像と近赤外画像のリアルタイム同時撮影を実現した。

本システムは、次世代の画像センシング技術として、リモートセンシング、セキュリティ、ロボティクス、農業、医療等の幅広い分野への発展が期待される。

プロトタイプシステムは、6月8日(水)からパシフィコ横浜で開催される「第22回画像センシングシンポジウム(SSII2016)」および6月27日(月)から米国ラスベガスで開催される「29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR2016)」でデモンストレーション展示される。

背景技術

現在広く普及する汎用カラーデジタルカメラやスマートフォンのカメラでは、単板撮像素子とカラーフィルターアレイ(CFA)を用いた撮影技術が広く採用されている。CFAは、R、G、B、それぞれのカラーフィルターをアレイ状に配置したものであり、現在多くのカラーデジタルカメラでは、図1に示すベイヤーCFA[用語1]が採用されている。CFAは撮像素子上に装着され、撮像素子の各画素ではRGBのうちの1つの画素値のみが記録されるため、CFAを通して得られるデータはモザイクデータとなる。フルカラー画像は、撮像素子により得られるモザイクデータに対し、デモザイキング処理[用語2]と呼ばれる補間処理や、色補正等の画像処理を行うことにより生成される。これにより、現在の汎用カラーデジタルカメラやスマートフォンのカメラでは、1つの撮像素子による安価で簡便なカラー画像撮影を実現している。

単板撮像素子とベイヤーCFAを利用したカラー画像撮影

図1. 単板撮像素子とベイヤーCFAを利用したカラー画像撮影

カラー画像と近赤外線画像の同時撮影への拡張

近年、カラー画像だけでなく、近赤外線画像を利用したコンピュータビジョンおよび画像処理技術応用の発展が著しく、可視光と近赤外光の画像を同時に取得したいという要望が高まっている。例えば、近赤外線カメラでは、近赤外光を照射することで夜間撮影が可能であることから、車載カメラや監視カメラ等において、カラー画像と近赤外線画像を同時利用した環境認識や防犯対策が期待されている。しかし、現在のカメラは、カラー画像または近赤外線画像のどちらか一方のみを撮影するものが一般的であり、カラー画像と近赤外線画像を同時撮影するには、複数台のカメラ等の大掛かりなシステムが必要となる。一方で、システムの小型化を目指し、上述する単板撮像素子とCFAを利用した撮影技術を拡張することで、カラー画像と近赤外線画像を同時に撮影する方式に関する研究が近年行われている。この方式では、CFA中に、近赤外線フィルターを加えることにより、カラー画像と近赤外線画像の同時撮影を実現する。図2はその一例を示しており、Nと記載された画素が、近赤外線フィルターに対応する。この方式は、従来のカラーデジタルカメラやスマートフォンのカメラと原理的にサイズやコストがほぼ同じなため、実用化へ向けた期待が大きい。ただし、近赤外線フィルターを有するCFAや各種画像処理アルゴリズムの新規設計が必要となり、これら全体を考慮した高画質なイメージングシステムの開発が課題になっていた。

単板撮像素子によるカラー画像と近赤外線画像の同時撮影

図2. 単板撮像素子によるカラー画像と近赤外線画像の同時撮影

開発システム

本研究開発では、上述する単板撮像素子とCFAを利用した方式により、高画質なカラー画像と近赤外線画像を同時に撮影可能なイメージングシステムのプロトタイプを開発した。図3に開発したプロトタイプシステムの概要を示す。このシステムは、新規開発した近赤外線フィルターを有するCFAを備える撮像素子および撮像データをリアルタイムで処理する画像処理システムにより構成される。画像処理システムでは、デモザイキング処理、色補正処理等の各種画像処理をリアルタイムで行い、撮影したカラー画像と近赤外線画像を、同時にリアルタイムでディスプレイ出力可能である。

開発したプロトタイプシステムの概要

図3. 開発したプロトタイプシステムの概要

単板撮像素子を用いたカラー画像と近赤外線画像の同時撮影では、CFAの配置と画像処理アルゴリズムの設計が、高画質な画像を得るための鍵となる。そこで、本研究開発では、高画質な画像生成の実現のため、図3中に示す新しいCFAの配置およびデモザイキング処理[文献情報2]を同時に提案することで、高精度なイメージングシステムを実現した。

開発システムは、次世代の画像センシング技術として、リモートセンシング、セキュリティ、ロボティクス、農業、医療等の幅広い分野への発展が期待される。

今後の展開

現在のシステムはプロトタイプのため、今後は実用化に向けたシステム設計やカメラモジュールの開発を行い、応用展開を図る。

謝辞

本研究開発の一部は総務省戦略的情報通信研究開発推進事業(SCOPE)(受付番号141203024)の委託を受けたものである。

用語説明

[用語1] ベイヤーCFA : Rフィルターを25%、Gフィルターを50%、Bフィルターを25%の画素密度でアレイ状に配置したもの

[用語2] デモザイキング処理 : カラーフィルターアレイを通して撮像素子に記録されるモザイク状のデータを補間し、フルの画像を生成する処理

文献情報

1.
“単板撮像素子を用いたリアルタイムRGB-NIRイメージングシステム” 吉崎和徳, 福西宗憲, 小宮康宏, 紋野雄介, 寺中駿人, 田中正行, 奥富正敏 第22回画像センシングシンポジウム(SSII2016), June, 2016(発表予定)
2.
“高性能RGB-NIRイメージングに向けたCFAとデモザイキング処理の提案” 寺中駿人, 紋野雄介, 田中正行, 奥富正敏, 吉崎和徳, 福西宗憲, 小宮康宏 第22回画像センシングシンポジウム(SSII2016), June, 2016(発表予定)
3.
“A Real-Time RGB-NIR Imaging System Using a Single Image Sensor” Kazunori Yoshizaki, Munenori Fukunishi, Yasuhiro Komiya, Yusuke Monno, Masayuki Tanaka, Masatoshi Okutomi and Steven Lansel IEEE Conference on Computer Vision and Pattern Recognition (CVPR2016)(デモンストレーション), June, 2016(発表予定)

工学院

工学院 ―新たな産業と文明を拓く学問―
2016年4月に新たに発足した工学院について紹介します。

工学院

学院・系及びリベラルアーツ研究教育院outer

問い合わせ先

東京工業大学 工学院 システム制御系
教授 奥富正敏

Email : mxo@ctrl.titech.ac.jp
Tel : 03-5734-3472 / Fax : 03-5734-3483

取材申し込み先

東京工業大学 広報センター

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

大隅良典栄誉教授が2016年ポール・ヤンセン生物医学研究賞を受賞

$
0
0

大隅良典栄誉教授大隅良典栄誉教授

東京工業大学科学技術創成研究院の大隅良典栄誉教授が、生物医学分野において重要な功績に対して贈られるポール・ヤンセン生物医学研究賞の受賞者に選ばれました。

今回、大隅栄誉教授が受賞するポール・ヤンセン生物医学研究賞は、人類の健康に著しく貢献する基礎研究や臨床研究をした科学者などに授与されます。 類まれな才能で、数々の薬を生み出し、現代薬学に大きく貢献したポール・ヤンセン博士の偉業を讃え、博士の創立した会社をグループ化した米国のJohnson & Johnson社が2005年より毎年授与しています。

今回の受賞は、大隅栄誉教授のオートファジーの研究功績が高く評価されたものです。オートファジーとは飢餓状態に置かれた細胞が飢餓を乗り切るために自らの細胞の一部を分解し、栄養源とする機能。大隅栄誉教授は、そのメカニズムや関連する遺伝子を次々と明らかにし、細胞や細胞組織の維持と修復に不可欠であることを解明し、生物医学分野の発展に大きく寄与しました。

大隅良典栄誉教授のコメント

Dr. Paul Janssenは、数々の重要な医薬を次々と開発し偉大な業績を挙げた巨人です。私は基礎生物学者として、酵母を用いてオートファジーと呼ばれる細胞内分解機構を長年研究してきました。27年前、この研究を始めた当初から医学領域に拡がることを期待した訳ではありませんし、創薬などを目指していた訳ではないので、この大きな賞に相応しいかという戸惑いもあります。しかし医学、薬学領域にあっても基礎的な研究が重要であることを認めて頂いたことに素直に感謝したいと思います。

大隅栄誉教授の受賞スピーチ

生命理工学院

生命理工学院 ―複雑で多様な生命現象を解明―
2016年4月に新たに発足した生命理工学院について紹介します。

生命理工学院

学院・系及びリベラルアーツ研究教育院outer

お問い合わせ先

東京工業大学研究戦略推進センター 川口

Email : kawaguchi.e.aa@m.titech.ac.jp
Tel : 03-5734-7268

冨田育義教授が平成27年度高分子学会賞(科学)を受賞

$
0
0

物質理工学院応用化学系の冨田育義教授が平成27年度高分子学会賞(科学)を受賞しました。

同賞は、公益社団法人高分子学会により、我が国の高分子科学および技術の進歩をはかるため、高分子科学、技術(工学、工業化技術を含む)に関する独創的かつ優れた業績を挙げた研究者に対し与えられる賞で、科学及び技術の2種の部門があります。

受賞となった研究題目
「精密高分子反応を基盤とする第14族~第16族元素ブロックをもつ未踏のπ共役高分子の開拓」

冨田育義教授(2016年5月26日の授賞式にて)
冨田育義教授
(2016年5月26日の授賞式にて)

今回の受賞は、冨田教授が展開してきた精密な高分子反応に基づく新合成手法により様々な元素ブロックを付与したπ共役高分子を構築し、それらの未踏の高分子材料が特異な光・電子特性をもつ優れた機能材料としての可能性を明らかにしてきた研究が高く評価されたものです。今回の受賞にあたり、冨田教授は次のようにコメントしています。

合成化学的手法に基づく基礎研究を評価して頂き、大変嬉しく感じております。多大なご支援をいただいた研究室スタッフ、卒業生、在校生、および学内外の共同研究者の皆様に心よりお礼申し上げます。

π共役高分子:ポリアセチレンやポリチオフェンのように主鎖に不飽和結合に基づくπ電子系の広がりをもつ高分子のこと。電子受容体や電子供与体によるドーピング処理によって導電性高分子となるほか、トランジスタ機能、光電変換機能、発光特性、磁気特性などをもつ機能性高分子として注目されている。π共役高分子に元素ブロックを付与すると優れた光・電子特性の発現が期待されるが、既存の合成法ではその多くは手にすることができなかった。

物質理工学院

物質理工学院 ―理学系と工学系、2つの分野を包括―
2016年4月に新たに発足した物質理工学院について紹介します。

物質理工学院

学院・系及びリベラルアーツ研究教育院outer

体の深部を探る世界初の近赤外発光基質を開発―生体発光イメージングの感度を飛躍的に高め、創薬研究の推進に貢献―

$
0
0

要点

  • 発光酵素ホタルルシフェラーゼと反応して近赤外光を産生する基質[用語1]を開発
  • マウス腫瘍モデルを用いた実験で最大40倍検出感度を上げることに成功
  • 疾患の新規治療法や新薬の開発に貢献できる

概要

東京工業大学の口丸高弘助教と近藤科江教授らは、電気通信大学の牧昌次郎助教と丹羽治樹教授らと共同で発光酵素ホタルルシフェラーゼ(以下、F-Luc[用語2])の基質の開発を行い、体内深部からの発光シグナルを感度良く観察することができる近赤外光を産生する実用的な基質Aka-HClの開発に世界で初めて成功した。F-Lucを用いた発光イメージングは、世界標準の光イメージング技術で、小動物を用いた創薬研究には不可欠な技術となっている。しかし、自然界に存在するF-Lucの発光基質[用語3]D-ルシフェリン(以下、D-luci[用語4])は、組織透過性が乏しい可視光領域の光を産生するため、これまで体内深部の観察には限界があった。また、これまでに開発された近赤外発光[用語5]を産生する基質は、産生する光が極端に弱かったり、水溶性が乏しく生体に応用できなかったり、F-Lucの変異体にしか反応しなかったりして、実用的ではなかった。今回開発した基質Aka-HClは、水溶性にも優れ、マウスを用いた実験でD-luciよりも最大40倍高い検出感度を示し、近赤外光を産生できる世界初の実用的な基質である。この基質を利用することで、これまでの方法では検出されなかった小さな病変の観察が可能になるため、新規治療法や新薬の開発への貢献が期待できる。本成果は、ネイチャー・パブリッシング・グループのオンラインジャーナルNature Communicationsに6月14日に掲載された。

研究成果

F-Lucと各基質との発光スペクトル
図1. F-Lucと各基質との発光スペクトル

このたび開発に成功した基質Aka-HClは、水溶性に優れ、毒性も無く、効率よく近赤外光を産生する(図1)。D-luciや、同じく可視光に発光ピークをもつ改良型D-luciのCycLuc1と比較すると、F-Lucと反応して産生する発光の組織透過性の高い事が牛肉スライス(厚さ4 mm, 8 mm)を用いた実験で示された(図2)。

牛肉スライスを用いた組織透過性評価

図2. 牛肉スライスを用いた組織透過性評価

マルチウェルプレートにF-Lucと各基質を入れて、その上から図に示した厚みの牛肉スライスを乗せて、牛肉を透過してくる光を上部からイメージング(左)し、透過光の強度を測定した(右)。

さらに、生体内深部の発光シグナルの検出感度を検証するために、検出が特に難しい肺がんモデルマウスを用いてイメージングを行ったところ、他の基質に比べて極めて高い感度で肺がんを検出することができた(図3)。

このように、今回開発した基質は、野生型のF-Lucと反応して近赤外領域の光を産生することができ、現在汎用されている基質と比較しても、組織透過性に優れ、体内深部からのシグナルを感度良く検出することを可能にした。

肺がんの可視化

図3. 肺がんの可視化

F-Lucを発現するがん細胞を移植した肺がんモデルマウスに、各基質を図に示した濃度で投与した後、発光イメージングでがん細胞を可視化した。

背景

生体発光イメージングは、小動物を対象に2000年頃から普及し始めた非侵襲的画像技術で、F-Lucとその天然基質であるD-luciとの組み合わせで産生される562 nmにピークをもつ可視領域の光を利用している。生体発光イメージングは、疾患モデルマウスや腫瘍モデルに汎用されており、この組み合わせが、世界標準として、創薬研究や基礎医学研究には不可欠なものとなっている。

しかし、可視領域の光は、体内に多く存在するヘモグロビンやメラニンなどにより吸収されるため、組織透過性に乏しく、非侵襲的な観察には限界があり、より感度の良い発光イメージング技術の開発が望まれていた。近赤外光は、体内で吸収されにくく、組織透過性に優れているため、体の深部にあるシグナルを体外から感度良く観察することを可能にする。そのため、体に傷をつけずに、生体内を観察する次世代の診断技術開発において注目されている。

研究の経緯

D-luciを改変して近赤外光を産生する基質は、これまでも開発されていたが、生体への応用には課題が多く、実用的な基質として使えるものは無かった。その理由は、基質を合成する研究者と生体内での有効性を評価する研究者が共同で開発してこなかった事が大きな要因である。今回我々は、F-Lucと反応して、近赤外領域に発光のピークを示すD-luciの誘導体を電通大で合成し、それらの生体イメージングでの有用性を、F-Lucを発現するがん細胞を移植した腫瘍モデルマウスを用いて、東工大で評価することで、効率よく目的の基質開発に繋げることができた。

今後の展開

今回開発した近赤外光を産生する基質は、既存のF-Lucの遺伝子改変マウス[用語6]や遺伝子導入細胞を用いた実験系に広く応用可能である。これまでよりも高い感度で体内深部の観察を可能にするため、広範な研究分野で、研究の推進に貢献できると期待される。今回開発した基質Aka-HClは、TokeOni (808350-5MG)という名称でSigma-Aldrich (米国ミズーリ州セントルイス市)より販売されている。

TokeOni(近赤外生物発光基質)outer

用語説明

[用語1] 基質 : 「酵素」と特異的に反応する化合物を「基質」という。ルシフェラーゼが「酵素」で、ルシフェリン、CycLuc1、Aka-HClが「基質」となる化合物。

[用語2] ホタルルシフェラーゼ(F-luc) : 北米産ホタルから単離された酵素で、ATP(アデノシン三リン酸)、マグネシウムイオン存在下で基質であるルシフェリンの酸化反応(発光反応)を触媒する。

[用語3] 発光基質 : 発光酵素と反応して光を産生する化合物

[用語4] D-ルシフェリン : ホタルルシフェラーゼと反応して光を産生する発光基質(化合物)

[用語5] 近赤外発光 : 650 nmより長波長側にピーク波長を有する生物発光。

[用語6] 遺伝子改変マウス : 特定の遺伝子が全身組織細胞もしくは特定の組織細胞に組み込まれている、または、変異導入されているマウス。

研究サポート

この研究は、新学術領域「がん微小環境ネットワークの統合的研究」および、JST・A-STEP(ハイリスク挑戦)の支援を受けて実施した。

論文情報

掲載誌 :
Nature Communications
論文タイトル :
A luciferin analog generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging
著者 :
Takahiro Kuchimaru, Satoshi Iwano, Masahiro Kiyama, Shun Mitsumata, Tetsuya Kadonosono, Haruki Niwa, Shojiro Maki, Shinae Kizaka-Kondoh
DOI :

生命理工学院

生命理工学院 ―複雑で多様な生命現象を解明―
2016年4月に新たに発足した生命理工学院について紹介します。

生命理工学院

学院・系及びリベラルアーツ研究教育院outer

問い合わせ先

東京工業大学 生命理工学院 生命理工学系
教授 近藤科江

Email : skondoh@bio.titech.ac.jp
Tel / Fax : 045-924-5800

電気通信大学 大学院情報理工学研究科
基盤理工学専攻 化学生命工学プログラム/
脳科学ライフサポート研究センター
助教 牧昌次郎

Email : s-maki@uec.ac.jp
Tel : 042-443-5493

取材申し込み先

東京工業大学 広報センター

Email : media@jim.titech.ac.jp
Tel : 03-5734-2975 / Fax : 03-5734-3661

電気通信大学 総務課広報係

Email : kouhou-k@office.uec.ac.jp
Tel : 042-443-5019 / Fax : 042-443-5887

リサーチリポジトリシステムT2R2の論文公開件数が5,000件を突破!

$
0
0

4月20日、T2R2システムにて学外公開されている論文等の本文ファイルが5,000件を突破しました。

T2R2システム(Tokyo Tech Research Repository)は、東工大の学術研究論文等の一元的な蓄積・管理・発信を目的としたシステムです。東工大所属の全ての研究者が執筆した学術研究論文等の書誌情報や、PDFファイル形式の論文本文を登録・保存・公開するための機能を備えています。また、T2R2システムに登録された論文・著書は、T2R2システムの検索サイトを通して、広く学内外の利用者による検索・閲覧が可能です。

5,000件目の論文を登録した髙橋篤司教授(工学院)に、T2R2で公開している論文について聞きました。

LELECUT(描いて描いて消す)
LELECUT(描いて描いて消す)

論文名
著者名
Yukihide Kohira, Chikaaki Kodama, Tomomi Matsui, Atsushi Takahashi, Shigeki Nojima, Satoshi Tanaka
掲載誌
Journal of Micro/Nanolithography, MEMS, and MOEMS(JM3)
巻号頁
Vol. 15 No. 2 pp. 1-7

論文の概要を教えてください

髙橋篤司教授
髙橋篤司教授

集積回路の製造では、光露光装置で回路パターンをウエハ上に転写し、エッチングによりウエハ上に回路パターンを形成します。しかし、現在、大量生産に用いられる光露光装置では、波長193ナノメートルのArFエキシマレーザーが光源として主に用いられており、線幅、線間隔が数十ナノ以下の微細な回路パターンをウエハ上に形成することは原理的に不可能であるため、これを形成するために様々な製造方法が用いられます。その中の一つが、この論文が対象とするLELECUTと呼ばれる製造方法です。LELECUTでは、露光・エッチング工程(LE)を2回繰り返しウエハ上にパターンを形成(LELE)したのち、3回目の露光・エッチング工程でパターンの一部を除去(CUT)することで、線幅、線間隔が数十ナノ以下の微細な回路パターンの形成を実現します。このとき、それぞれの露光・エッチング工程で形成されるパターンは、露光・エッチング工程で形成できるための条件を満たさなければならないだけでなく、工程間の合わせズレの影響を最小限に抑えることが求められます。この論文では、LELECUTのための、合わせズレに強いパターン分割を、半正定値計画緩和法を用いて効率よく求める手法を提案しました。

T2R2システムで公開されたファイルをどのような方々に読んでいただきたいですか

最先端の集積回路製造技術に関する論文誌に掲載された論文ですが、リソグラフィ関連の技術に興味を持たれている方だけでなく、アルゴリズムなどに興味を持たれている方にも是非読んでいただきたいと思います。

今後の研究活動のご予定を教えてください

理論面と実用面の両方から様々な次世代リソグラフィ技術を分析することで、次世代リソグラフィ技術にマッチした実用的な集積回路設計フローが構築できるよう研究していきたいと考えています。

本学では、今後もT2R2システムを通じ、東工大の研究成果を世界へ向けて発信していきます。

お問い合わせ先

リサーチリポジトリWG(事務担当)

Tel : 03-5734-2099

Viewing all 2008 articles
Browse latest View live