なお、本論文は、高木英樹(筑波大学)、中島求(東京工業大学)、佐藤陽平(ポール・シェレール研究所・スイス)、松内一雄(筑波大学名誉教授)、ロス・サンダース(シドニー大学・オーストラリア)の共同執筆論文であり、2015年12月23日付「Journal of Sports Sciences」でオンライン公開されました。
水泳人体シミュレーションモデル(SWUM)を用いて、ヒトの筋出力特性を考慮した最適泳法シミュレーションを行った結果、最も少ない身体発揮パワーで効率よく推進力が得られる泳ぎ方は、肘を曲げて、指先が曲線を描く、S字ストロークに類似した泳法でした。一方、最も速度が高くなる泳ぎ方は、肘をあまり曲げずに、指先が直線的に移動するI字ストロークに類似した泳法です(Nakashima et al., 2012)。実際の競泳レースにおいても、400m自由形以上の中長距離種目では、S字を描くように水をかいて好成績を上げるスイマーが多く、50~100m自由形のように短距離種目においては、ほぼまっすぐにかくI字ストロークを採用するスイマーが多数です。なぜこのようにS字とI字に分かれるのでしょうか?泳速度はストローク頻度に比例するため、泳速度を上げるためには、腕を速く回す必要が生じます。本来は肘を曲げて、S字をかいた方が効率が良いのですが、ストローク頻度が一定程度以上に高まると、肩まわりの筋力特性が制限因子となって、曲線的にかくことができなくなります。そこで、あえて効率を犠牲にしてでも腕の回転数を上げるために、肘をあまり曲げないで、まっすぐかくようになると推察されます。
ではS字にかいた場合と、I字でかいた場合で、推進力発揮メカニズムは異なるのでしょうか?ヒトの泳動作を再現できる水泳ロボットを用い、手部における流体力、圧力分布、流れ場の計測を行った研究成果(Takagi et al., 2014)をもとに検証を行いました。その結果、S字のように曲線を描いて水をかくと、図1上に示すように、手の進行方向が変わる局面において渦が放出され、その渦の影響によって手部周りの循環渦の向きが逆転し、手背側の圧力が急激に低下して、瞬間的に大きな揚力が発生することが明らかとなりました。一方、I字のように直線的に水をかくと、図1下に示すように、手部の両サイドから交互に渦(カルマン渦)が放出され、手背側の圧力が低下するとともに、手掌側は水が当たって圧力が上昇するので、結果的に手掌と手背で圧力差が生じ、抗力が発生することが分かりました。
さらに実際のスイマーがクロール泳を行った場合の手部周りの流れの可視化結果(Matsuuchi et al., 2009)によると、ロボットの実験同様に、手の進行方向が変わる局面において、時計回りの渦が放出され、それと対をなす反時計回りの渦が手背側に発生していました。これらの渦の影響により、非定常な揚力が手部に作用したと考えられます。(図2、3参照)
Image may be NSFW. Clik here to view.
図2.
泳者がクロール泳を行った時の手部周りの流れ場 ストローク中盤インスウィープからアップスウィープへと移行する局面(図3参照、(a)→(b)→(c)→(d)の順)における手部周りの流速ベクトルおよび渦度。図中の小さな矢印は流れの方向と強さを表す。また赤色は反時計回りの渦で+印が渦中心、青色は時計回りの渦で◯印が渦中心を表し、色が濃くなるに連れて渦度が増加する。図2-(b)の●は、泳者右手の指を表しており、図中で手部が左から右へ移動する際、手背側に2つの渦対(+と◯)ができ、2つの渦の間に流れ込むジェット流が観察される。このジェット流の作用により、瞬間的に大きな流体力が手部に作用し、推進力として貢献する。(Matsuuchi et al., 2009)
Matsuuchi, K., Miwa, T., Nomura, T., Sakakibara, J., Shintani, H., & Ungerechts, B. E. (2009). Unsteady flow field around a human hand and propulsive force in swimming. Journal of Biomechanics, 42(1), 42-47. doi: 10.1016/j.jbiomech.2008.10.009Image may be NSFW. Clik here to view.
Nakashima, M., Maeda, S., Miwa, T., & Ichikawa, H. (2012). Optimizing Simulation of the Arm Stroke in Crawl Swimming Considering Muscle Strength Characteristics of Athlete Swimmers. Journal of Biomechanical Science and Engineering, 7(2), 102-117.
Takagi, H., Nakashima, M., Ozaki, T., & Matsuuchi, K. (2014). Unsteady hydrodynamic forces acting on a robotic arm and its flow field: Application to the crawl stroke. Journal of Biomechanics, 47(6), 1401-1408. doi: 10.1016/j.jbiomech.2014.01.046Image may be NSFW. Clik here to view.
論文情報
掲載誌 :
Journal of Sports Sciences
論文タイトル :
Numerical and experimental investigations of human swimming motions
(和訳)水泳運動を対象とした数値的・実験的解析結果についての考察
著者 :
Hideki Takagi, Motomu Nakashima, Yohei Sato, Kazuo Matsuuchi and Ross Sanders
1Materials and Structures Laboratory, Tokyo Institute of Technology 2Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University 3Quantum Beam Science Center, Japan Atomic Energy Agency
Using Graph Components Derived from an Associative Concept Dictionary to Predict fMRI Neural Activation Patterns that Represent the Meaning of Nouns
著者 :
Hiroyuki Akama1*, Maki Miyake2, Jaeyoung Jung1, Brian Murphy3#
所属 :
1Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Tokyo, Japan 2Graduate School of Language and Culture, Osaka University, Osaka, Japan 3Machine Learning Department, Carnegie Mellon University, Pittsburgh, United States of America #Current Address: School of Electronics, Electrical Engineering and Computer Science, Queen's University, Belfast, United Kingdom
今回本研究グループは、この疑問を解決すべく、各遺伝子の発現において、翻訳途上の中間体であるペプチジルtRNAが鎖のどのような配列の部位でどの程度蓄積するのかを、生きた大腸菌(in vivo)及び再構成型無細胞試験管内翻訳反応系(in vitro)を用いて検討しました。大腸菌ゲノム上の遺伝子の約1/4に相当する1038遺伝子をこの方法(iNP = integrated in vivo and in vitro nascent chain profilingと命名)によって解析した結果、80%以上の遺伝子で、翻訳途上産物の蓄積が観察され、翻訳の一時的停滞が1回あるいは複数回起こっていることが明らかになりました。そのうち半数近くでは、「翻訳アレスト現象」で解析された結果と同様に、リボソームの翻訳活性が阻害されるため翻訳の一時停止が起こることがわかりました。新生鎖とリボソーム出口トンネルが相互作用することによるリボソーム機能の制御は、これまで考えられた以上に普遍的な生命現象であると言えそうです。
1Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8511, Japan, 2Nanosystem Research Institute (NRI) 'RICS', National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan, 3Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan, 4WPI Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.
[用語1]40GHz帯 : ITU WRC-2000(World Radio communication Conference)において 「固定業務における高密度に配置して使用する無線通信システムに利用可能である」という議決がなされた帯域に該当するものであり、国内周波数分配の脚注 J260 にも同様の記載のあるものです。
[用語5]IEEE802.15.3e : 最大 100 Gbps までの物理層データ伝送速度とリンクセットアップ時間2 ms をサポートする次世代60GHz 無線通信規格です。
[用語6]Content Centric Networking(CCN) : 現在 Internet Research Task Force(IRTF)で議論がなされている、Internet Protocol(IP)に変わる新しいプロトコルです。現在のIPが端末間を接続することを目的としているのに対して、「コンテンツ」の配信を目的としてネットワークを構築し直すという考え方に基づいています。
ニュースリリース: 世界最高 のデータ伝送速度6.3 Gb/sを実現する低消費電力・広帯域ミリ波無線用LSIを共同開発~モバイル機器搭載を想定した低消費電力動作を実現~ Sony JapanImage may be NSFW. Clik here to view. / 東京工業大学Image may be NSFW. Clik here to view.